Journal of Chromatography, 133 (1977) 107-125 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 9656

GAS-LIQUID CHROMATOGRAPHIC STUDIES OF REACTIONS AND STRUCTURAL RELATIONSHIPS OF STEROIDS

V. CONCURRENT SUBSTITUTION IN THE PREGNANE SIDE-CHAIN AND POSITION 11*

FRANTZ A. VANDENHEUVEL

Animal Research Institute, Research Branch, Canada Department of Agriculture, Ottawa, Ontario KIA 0C6 (Canada)

(Received August 30th, 1976)

SUMMARY

Qualitative and quantitative effects of classical reactions on steroids observed by gas-liquid chromatography (GLC) under standardized conditions, including the double internal standard technique, are reported. Simple procedures applicable to nanogram amounts of reactants are described. Reactions studied include the conversion of keto groups to hydroxyl groups by NaBH₄, and the removal of the pregnane side-chain with NaBiO₃. GLC chromatograms readily provide information on effects on functional groups at positions 3, 11, 17, 20, and 21 and the retention times of many steroids unavailable from commercial sources. GLC data analysis provides relationships between steroid structure and retention time from which methods for the computation of retention times and steroid identification are designed. The accuracy of these methods is demonstrated.

INTRODUCTION

The fifth in a series of articles¹⁻⁴ dealing with reactions and structurally dependent chromatographic properties of steroids, the present communication concerns groups of steroids which include very important corticosteroid hormones and metabolites. The steroids of concern are related to those dealt with in Part IV⁴. Table II, column 4, shows that at least one gas-liquid chromatographic (GLC) property of 17a, 21(20)-steroids is not altered by the introduction of (11) or 11 β , viz., their propensity to decompose under GLC conditions. Thermal stability is observed, however, for all other steroids of these groups, including those with a fully reduced side-chain, the 17a, 20a, 21- and 17 β , 20 β , 21-steroids. Understandably, full reduction of the sidechain will reveal the presence of thermally unstable species. For this and other reasons discussed below, the facile reduction by sodium borohydride (RD)¹ is a very important

^{*} Contribution No. 656 of the Animal Research Institute.

tool in detecting, estimating, and identifying the steroids of concern. Hence ,results obtained by applying this reaction are fully described in Table I^{*}.

In Part IV⁴, a study of CrO_3 -pyridine reaction with parent steroids substituted in the side-chain had shown that little information useful for the purpose of identification could be derived from the products. Similar results were obtained with the 11substituted parent compounds. In contrast, sodium bismuthate oxidation (NaBiO₃) produced high yields, generally of a single product characteristic of the original steroid⁵.

The present article reports in Table II the results of an extensive investigation of this reaction with all types of steroids substituted in the side-chain, including those not substituted at position 11. The normal products with this last category of steroids are described in Table XIII. GLC data on the normal products of (11)- and 11β -substituted steroids are given in Tables XIV and XV, respectively.

In Part IV⁴, the normalcy¹ of retention time t'_{NR} , of steroids substituted in the side-chain, though not at position 11, was shown to be a general feature. For these compounds, the L_R value expressed by

$$L_R = 10^3 \times \log t'_{NR} \tag{1}$$

is the sum of two constants

$$L_R = M_R + G_R \tag{2}$$

where G_R is characteristic of the group to which the steroid belongs, and M_R a value characteristic of the structure of ring A. M_R values are listed in Table I of ref. 4. Thus the M_R value for steroids with the same ring A or *M*-features is identical by definition. Hence the difference ΔG_R (a,b) of the L_R values, L_R (a) and L_R (b), for *M*-corresponding steroids in groups (a) and (b), is given by the difference of the corresponding G_R values, as follows from eqn. 2

$$\Delta G_{R}(a,b) = L_{R}(a) - L_{R}(b) = G_{R}(a) - G_{R}(b)$$
(3)

As shown in refs. 1-3, deviations of G_R indicating oddity occur for certain steroids of the same group as a result of 11-substitution. However, it was shown also that such deviations are identical in sign and size for *M*-corresponding steroids, and that eqn. 3, therefore, is still applicable to odd steroids¹⁻⁴. Hence, the L_R value of any steroid, L_R (a), can be calculated from the known value L_R (b) of an *M*-corresponding steroid featuring the same substitution at position 11 by

$$L_R(\mathbf{a}) = L_R(\mathbf{b}) + \Delta G_R(\mathbf{a}, \mathbf{b}) \tag{4}$$

Here ΔG_R (a,b) is characteristic of groups (a) and (b) and readily calculable by eqn. 3 given any pair of L_R values L_R (a) and L_R (b) for *M*-corresponding steroids of these groups (Table XVI).

[•] In the tables, under source, a letter followed by four digits indicates the catalogue number of Steraloids Inc., P.O. Box 127, Pawling, N.Y. 12564, U.S.A. Steroids provided by the Steroid Standard Collection are indicated by SRC; see Acknowledgements.

The present GLC data on 11-substituted steroids, together with similar data from Parts I¹, II², and IV⁴, were used to test the accuracy of L_R values calculated by eqn. 4 (Table XVIII).

As shown in the discussion, the wide range of applicability and the reliability of this method of calculation thus demonstrated allow the retention time of steroids of given structure to be accurately predicted. The use of this method of calculation, together with the application of selected reactions whose products are characteristic of the given structure therefore permits the unequivocal identification of a steroid to be made even when a sample of the compound is unavailable. The advantages of this novel approach for the systematic analysis of steroids are discussed.

EXPERIMENTAL

Reactions

Procedures used for the RD and the trimethylsilyl (TMS) derivatization of hydroxyl groups have been described in detail¹.

The procedure used for sodium bismuthate (NaBiO₃) oxidation was as follows: From 0 to 25 μ g of steroid were placed in a 1-ml volumetric-flask (Corning tube No. 5640) by adding with a microsyringe the required volume of solution in methanol and evaporating the solvent under nitrogen. To the contents were added successively, $15 \pm 1 \text{ mg}$ of NaBiO₃ (Analar; BDH, Toronto, Canada), a 1/8 in. \times 1/2 in. PTFE covered micro-magnet (Fisher No. 9-312-102), and 120 μ l of 50% (w/v) aqueous acetic acid. The tube was placed in a holder over a strong magnetic stirrer (Gyrathron, Bronwill Scientific Model 25210) adjusted to 350 rpm.

The holder consisted of two 10 cm diameter, 20 mm thick disks of styrofoam glued together face to face after one of the disks had been punched with a No. 4 cork borer to produce a series of 8-mm holes right through and 20 mm from its center. Up to ten tubes held in these holes in a vertical position could be processed simultaneously.

After 30 min of stirring at room temperature, 120 μ l of 25% aqueous NaOH were added dropwise to the tube, which was stirred for 1 min. Using a 3 cm long bar magnet, the micro-magnet was made to slide up the side to the neck of the tube where it was seized at one end with tweezers, and held just above the mouth of the tube. It was washed in this position with 600 μ l of benzene added dropwise, the washings being collected in the tube. After 1 min of vigorous stirring with a vortex mixer, the mixture was centrifuged for 1 min. The clear supernatant (solvent) was carefully removed with a 1-ml syringe (point style No. 3, gauge 22 needle). The extraction with 600 μ l of benzene was repeated three times. The combined extracts (2.4 ml) were brought, either by dilution or evaporation depending on the concentration, to such a volume that a 50- μ l sample contained enough material for GLC analysis. The sample was evaporated to dryness under nitrogen and submitted to TMS derivatization.

Gas-liquid and thin-layer chromatography

Both gas-liquid and thin-layer chromatography (TLC) methods were used as previously described¹⁻⁴. All t'_{NR} values were obtained with steroids or steroid mixtures submitted to TMS derivatization.

DISCUSSION

Reactions

Reduction by $NaBH_4$. RD is as shown in Table I. The behaviour of steroids substituted at position 11 paralleled that of the parent steroids described in Table II of Part IV⁴. High yields of 20a and 20β products giving excellent GLC chromatograms after TMS derivatization were observed even when the original (20)-steroid was thermally unstable and did not give a GLC peak. While the 20β product again was the major one in all cases, the $20a/20\beta$ ratios did not differ as sharply among different groups as they did with the corresponding groups of parent steroids⁴. However, the 21-hydroxyl group again reversed the order of appearance of the GLC peaks of the 20a- and 20β steroids, as shown by the t'_{NR} values listed in Tables V and VI, VIII and IX, and XI and XII.

TABLEI

REDUCTION BY NaBH₄ (2 h) OF 11-SUBSTITUTED 20-KETONES

Starting material		Normal pr	oduct*		
Abbreviation	Source	GLC pr	roperties	20α/20β	GLC properties
		t'_{NR}	L _R	ratio	
5βP3a17a(11,20)	P6200	783	2894	17/83	cf. Tables V (β)
5aP17a(3,11,20)	P4100	905	2956	18/82	and VI (α)
$\Delta 5P3B17\alpha(11.20)$	SRC	989	2995	17/83	
Δ 4P11 β 17 α (3.20)	01520, SRC	1417	3151	19/81	
				Av. 18/82	
5aP3a21(11,20)	P2200	1244	3095	15/85	cf. Tables VIII (β)
$5\beta P3\alpha 21(11,20)$	P6240	1178	3071	13/87	and IX (a)
$5\alpha P3\beta 21(11,20)$	P2230	1648	3217	13/87	•••
⊿4P21(3,11,20)	O3690	1647	3217	18/82	
5BP11B21(3,20)	P6270	1510	3179	15/85	
$5\alpha P3\beta 11\beta 21(20)$	P5400	2059	3314	15/85	
$\triangle 4P11\beta 21(3,20)$	Q1550	2250	3352	15/85	
				Av. 15/85	
$5\beta P17\alpha 21(3,11,20)$	P7100	dec	composes	23/77	cf. Tables XI (β)
$5\beta P3\alpha 17\alpha 21(11,20)$	P9550	dec	composes	23/77	and XII (a)
$5\alpha P3\beta 17\alpha 21(11.20)$	P5200	dec	composes	18/82	
Δ4P17α21(3,11,20)	Q2500	dec	composes	19/82	
$5\beta P3\alpha 11\beta 17\alpha 21(20)$	P9050	dec	composes	17/83	
$\Delta 5P3B11B17\alpha 21(20)$	O5750	dec	composes	17/83	
Δ4P11β17α21(3,20)	Q3880	dec	composes	20/80	
	-		•	Av. 20/80	

* While the RD of (20) invariably produces both 20α and 20β isomers, that of (3) yields almost exclusively 3α with a 5β compound and 3β with a 5α compound. For 30-min reductions leading to compounds still featuring (11), cf. text.

As always¹⁻⁴, the 3-keto group in $5\beta P(3)$ -steroids was converted to 3α and to 3β in all others. The 11-keto group yielded 11β exclusively after 2 h reduction^{1,2}. After 30 min, only a fraction of (11) was reduced, while (20) was completely reduced to 20α and $20\beta^{1,2}$. The preparation of (11)-steroids completely reduced in the side-chain was therefore possible (see Tables III, IV, VII, and X).

TABLE II

MOLE PER CENT COMPOSITION, C, AND TOTAL PER CENT RECOVERY, R, OF PRODUCTS FROM NaBIO, OXIDATION OF STEROIDS SUBSTITUTED IN THE PREGNANE SIDE-CHAIN

Start	ing material*			Normal product**	
No.	Abbreviation	Source	GLC properties	C (in brackets) (mole %)	R (%)
- 9	5/JP3a17a20/J 5/JP3a17a20/a	P9480 P9450	cf. Table VII of rcf. 4 cf. Table VIII of ref. 4	[0.8] unchanged, [12.7] $5\beta P3\alpha(20)$, [21.8] $5\beta A3\alpha(17)$, and [64.6] $5\beta P3\alpha20\beta$ [6] unchanged, [93] $5\beta A3\alpha(17)$	84 80
3	Δ5P3β17a20a	SRC	cf. Table VIII of ref. 4	[25] unchanged, [40] $\Delta 5A3\beta(17)$, [35] 5,6-epoxy-A3 $\beta(17)$	65
4	ΔISP3β17a20β	Q5890	cf. Table VII of ref. 4	$[25.5]$ unchanged, $[35.5]$ $\Delta 5A3\beta(17)$, $[38.5]$ 5,6-epoxy-A3 $\beta(17)$	2
e o	Δ4Ρ17α20α(3) Δ4Ρ17α20β(3)	Q1820 Q1850	cf. Table VIII of ref. 4 cf. Table VII of ref. 4	[25] unchanged, [75] 2/4A(3,17) [19] unchanged, [81] 2/4A(3,17)	22 20
٢	5ßP17a21(3,20)	P6300	decomposes	[95] \$ßA(3,17)	75
8 6	5aP17a21(3,20) /14P17a21(3,20)	P2320 Q1610	decomposes decomposes	[97] 5&A(3,17) [97] /14A(3,17)	66 61
10	5aP17a20\$21	SRC	cf. Table XII of ref. 4	[96] 5aA(17)	65
12	Δ5P3β17u20u21 Δ4P17a20β21(3)	SRC Q4080	cf. Table XIII of ref. 4 cf. Table XII of ref. 4	[75]/15A3#(17), [25] 5,6-epoxy-A3#(17) [97]/14A(3,17)	65 49
13	5aP17a(3,11,20)	P4100	cf. Table I	[11] unchanged, [89] $5\alpha A(3,17)$	63
14	5βP17a21(3,11,20)	P7100	decomposes	[92] 5ßA(3,11,17)	56
15	5/P3a17a21(11,20)	P9550	decomposes	$[95] 5\beta A3\alpha(11,17)$	59
12	44P17a21(3,11,20)	Q2500	decomposes	[11,11)/(cADC 1/2) [97] /4A(3,11,17)	01 23
18	5\P3a17a20\b21(11)	P9200	cf. Table X	[96] $5\beta A3a(11,17)$	67
19	5\b3a11\b17a21(20)	P9050	decomposes	[97] 5ßA3u11ß(17)	68
20	5aP11/917a21(3,20)	P5250	decomposes	$[98] 5\alpha A11\beta(3,17)$	49
ដដ	$A5P3\beta11\beta17\alpha21(20)$ $A4P11\beta17\alpha21(3,20)$	Q5750 Q3880	decomposes decomposes	[66]_d5A3#11.B(17), [27] 5,6-cpoxy-d5A3#11.B(17) [97]_d4A11.B(3,17)	89 OS
33	5βΡ3β11β17α20β21	P8620	cf. Table XI	[96.5] 5//A3//11/8(17), [4.5] 5//P3/8(11,17)	64
54	5BP3a11B17a20B21	P8590	cf. Table XI	[85] 5µA3a11µ(17), [15] 5µA3a(11,17)	65
52	5aP3/11/317a20/21	P4350	cf. 1 able XI	[97] 5αΑ3β11β(17)	70
26 27	A4P11 <i>β</i> 17a20 <i>β</i> 21(3) A4P11 <i>β</i> 17a20a21(3)	Q3790 Q3760	· c/. Table XI c/. Table XII	[96]/4A11/f(3,17) [98]/14A11/f(3,17)	52 54
-	• All starting materials • The L _R values of mo	t listed wei	re available from outside so s are listed in Tables XIII-	irces; prepared compounds were also used (cf. text).	-

While a complete RD revealed the presence of 17a21(20)-steroids unaccountable by direct GLC (*cf.* above), (3) and (11) groups were also reduced in the process¹⁻⁴. The products therefore gave a clue as to the presence of substitution at positions 3 and/or 11, but none as to the original nature of these substitutions. This and other structural problems were readily solved by NaBiO₃ oxidation.

 $NaBiO_3$ oxidation. In 1953, Brooks and Norymberski⁵ showed that NaBiO₃ oxidation of steroids substituted in the pregnane side-chain produced high yields of fragments characteristic of their structure and proposed the analysis of these products as a means of estimating these steroids. While the estimation of corticosteroids by quantification of the formaldehyde generated by this reaction has proved reliable⁶, later work by Breuer and Nocke⁷ has revealed complications precluding the use of the 17-ketosteroid products for the quantitative estimation of steroids substituted in the side-chain.

The present, systematic investigation of the reaction products has shown, however, that their analysis by GLC afforded a reliable tool for the identification of the original steroids. Indeed, with the sole exception of 20β -pregnanetriol (No. 1), all steroids listed in Table II yielded the readily identifiable parent 17-ketoandrostane as a major, if not the sole product of NaBiO₃ oxidation which was demonstrable by

TABLE III

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P17 $\alpha 20\beta(11)$

Steroid	ł		Source(s)		
M	Abbreviation	t' _{NR}	L_R	G _R *	
I	5βΡ17α20β(11)	564	2751	638**	Calculated; $L_R 5\beta P20\beta(11)^{***} + \Delta G_R^3$
II	$5\alpha P17\alpha 20\beta(11)$	632	2801	651	Calculated; $L_R 5\alpha P20\beta(11)^{***} + \Delta G_R^{\sharp}$
III	5βΡ3β17α20β(11)	1130	3053	651	Calculated; $L_R 5\beta P3\beta 20\beta(11)^{***} + \Delta G_R^{$}$
IV	$5\alpha P3\alpha 17\alpha 20\beta(11)$	1132	3054	653	Calculated; $L_R 5\alpha P3\alpha 20\beta(11)^{***} + \Delta G_R^3$
v	$5\beta P17a20\beta(3,11)$	1099	3041	638**	Calculated; $L_R 5\beta P20\beta(3,11)^{***} + \Delta G_R^{*}$
VI ·	5βΡ3α17α20β(11)	1114	3047	626**	Prepared; 30 min RD 5β P3a17a(11,20)
VII	5αΡ17α20β(3,11)	1250	3097	644**	Calculated; $L_R 5\alpha P20\beta(3,11)^{***} + \Delta G_R^{\$}$
VIII	Δ4 Ρ3β17α20β(11)	1321	3121	638**	Calculated; $L_R \Delta 4P3\beta 20\beta(11)^{***} + \Delta G_R^3$
IX	Δ5P3β17α20β(11)	1396	3145	648	Prepared; 30 min RD $\Delta 5P3\beta 17\alpha(11.20)$
x	5αΡ3β17α20β(11)	1459	3164	658	Prepared; 30 min RD $5\alpha P17\alpha(3.11.20)$
XI	⊿14P17α20β(3,11)	1422	3153	622**	Calculated; $L_R \Delta 4P20\beta(3,11)^{***} + \Delta G_R^3$

* Average G_R -normal value = G_R P17a20 $\beta(11) = 654$.

** G_R-odd steroid.

** For L_R value, see Table IX of ref. 2.

[§] $\Delta G_R = 141$; cf. Table XVI.

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P17 α 20 α (11)

Steroid	1		Source(s)		
M	Abbreviation	ť _{NR}	L_R	G _R *	
I	5βΡ17α20α(11)	624	2795	682**	Calculated; $\tilde{L}_R 5\beta P20\alpha(11)^{***} + \Delta G_R^{3}$
II	5aP17a20a(11)	685	2836	686	Calculated; $L_R 5\alpha P20\alpha(11)^{***} + \Delta G_R^{s}$
ш	$5\beta P3\beta 17a20a(11)$	1245	3095	693	Calculated; $L_R 5\beta P3\beta 20\alpha (11)^{***} + \Delta G_R^{\$}$
IV	5aP3a17a20a(11)	1236	3092	691	Calculated; $L_R 5\alpha P3\alpha 20\alpha (11)^{***} + \Delta G_R^{s}$
v	5βΡ17α20α(3,11)	1213	3084	672**	Calculated; $L_R 5\beta P20\alpha(3,11)^{***} + \Delta G_R^3$
VI	5βΡ3α17α20α(11)	1239	3093	672**	Prepared; 30 min RD $5\beta P3\alpha 17\alpha(11,20)$
VII	5aP17a20a(3,11)	1358	3133	680**	Calculated; $L_R 5\alpha P20\alpha(3,11)^{***} + \Delta G_R^{\$}$
VIII	Δ4P3β17α20α(11)	1426	3154	669**	Calculated; $L_R \varDelta 4P3\beta 20\alpha(11)^{***} + \varDelta G_R^{\$}$
IX	Δ5P3β17α20α(11)	1518	3181	684	Prepared; 30 min RD $\sqrt{15P3\beta 17\alpha(11,20)}$
х	5αΡ3β17α20α(11)	1566	3195	689	Prepared; 30 min RD $5\alpha P17\alpha(3 11 20)$
XI	⊿4P17α20α(3,11)	1542	3188	657**	Calculated; $L_R \varDelta 4P20\alpha(3,11)^{***} + \varDelta G_R^{\$}$

* Average G_R -normal value = G_R P17 $\alpha 20\alpha(11) = 688$.

** G_R-odd steroid.

*** For L_R value, see Table X of ref. 2.

[§] $\Delta G_R = 166$; cf. Table XVI.

GLC. The important point is, of course, that this product possesses all structural features not included in the side-chain of the original steroid. Together with the TLC and GLC data on the original steroid, this information constitutes a basis for unequivocal identification.

The case of 20β -pregnanetriol which yields the parent 20β -diol as major product is remarkable. No other triol, nor any of the corresponding (11)- or 11β -substituted steroids, including the $5\beta P3a20\beta$ compounds No. 18 and No. 24 showed similar behaviour.

The $\Delta 53\beta$ -steroids, in addition to the normal 17-keto products, yielded important amounts of the corresponding 5,6-epoxy derivatives (*cf.* compounds Nos. 3, 4, 11, and 21 in Table II) which gave additional evidence for the $\Delta 5P3\beta$ structure. Remarkably, the L_R values of the 17-keto and 5,6-epoxy-17-keto products always differed by 140 \pm 1 L_R units. Identical 5,6-epoxides were obtained by NaBiO₃ oxidation of the $\Delta 53\beta(17)$ -steroids listed in Tables XIII-XV. For example, 90% of $\Delta 5A3\beta$ (17) was converted under standard conditions to the 5,6-epoxy derivative in 4 h.

While the 21(20)-, $20\beta 21$ -, and $20\alpha 21$ -steroids yielded normal GLC peaks (cf. Table I of Part IV⁴ and the present article), their NaBiO₃ oxidation products, as indeed their CrO₃ oxidation products⁴ gave no GLC peaks. Presumably the 20-

TABLE V

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P11 β 17 α 20 β

Steroid	1		Source(s)		
M	Abbreviation	t'_{NR}	L _R	G _R *	
I	5βΡ11β17α20β	650	2813	700**	Calculated; L_R 5 β P11 β 20 β^{***} + $\Delta G_R^{\$}$
II	5αΡ11β17α20β	736	2867	717	Calculated; $L_R 5\alpha P11\beta 20\beta^{***} + \Delta G_R^{\$}$
III	5βΡ3β11β17α20β	1285	3109	707**	Calculated; $L_R 5\beta P3\beta 11\beta 20\beta^{***} + \Delta G_R^{s}$
IV	5αΡ3α11β17α20β	1288	3110	709**	Calculated; $L_R 5\alpha P3\alpha 11\beta 20\beta^{***} + \Delta G_R^{\$}$
• v	5β P11 β 17 α 20 β (3)	1312	3118	706**	Calculated; $L_R 5\beta P11\beta 20\beta(3)^{***} + \Delta G_R^{s}$
ุvı	5βΡ3α11β17α20β	1247	3096	675**	P8750; prepared 2 h RD P6200; cf. Table I
VII	$5\alpha P11\beta 17\alpha 20\beta(3)$	1507	3178	725	Calculated; $L_R 5\alpha P11\beta 20\beta(3)^{***} + \Delta G_R^{5}$
VIII	Δ4Ρ3β11β17α20β	1560	3193	710**	Prepared; 2 h RD \varDelta 4P17 α 20 β (3,11); cf. Table I
IX	Δ5 Ρ 3β11β17α20β	1656	3219	722	Prepared; 2 h RD \varDelta 5P3 β 17 α (11,20); cf. Table I
x	5αΡ3β11β17α20β	1702	3231	725	Prepared; 2 h RD 5α P17 α (3,11,20); cf. Table I
XI	Δ4 Ρ 11β17α20β(3)	1786	3252	721	Calculated; $L_R \Delta 4P11\beta 20\beta(3)^{***} + \Delta G_R^{3}$

* Average G_R -normal value = G_R P11 β 17 α 20 β = 723.

** G_{R} -odd steroid.

*** For L_R value, see Table XI of ref. 2.

[§] $\Delta G_R = 168$; cf. Table XVI.

carboxylic acid arising from 21(20)-steroids⁵ is not extracted from the neutralized reaction mixture and the 17-aldehydic products from $20\beta 21$ - and 20a 21-steroids⁵ would be thermally unstable.

The 21(20)-, 20 α 21-, and 20 β 21-steroids, therefore, are characterized by the disappearance of their GLC peak after NaBiO₃ treatment and the absence of any product demonstrable by GLC. This property confirms a tentative identity based on TLC and GLC data of the original steroid and its RD products.

The characteristic property of 17a(20)-steroids is that they are unaffected by NaBiO₃ (ref. 5).

Because of appreciable differences in reactivity towards NaBiO₃, the standard conditions described above were selected as a satisfactory compromise ensuring good, roughly uniform yields in all cases.

Yields increased for the least reactive, but decreased for the most reactive steroids when the reaction time was extended from 30 min to 45 min, all other conditions remaining as previously described. Beyond 1 h, a general deterioration of recoveries was observed. A time-dependent decrease in recovery was also demonstrable when the oxidation procedure was applied directly to the 17-keto oxidation products listed in Tables XIII-XV. However, because the recoveries of these compounds still

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P11 β 17 α 20 α

Steroid					Source(s)
M	Abbreviation	ť _{NR}	G _R *		
I	5βΡ11β17α20α	718	2856	743**	Calculated; L_{R} 5 β P11 β 20 α^{***} + ΔG_{R} [§]
II	5αΡ11β17α20α	800	2903	753	Calculated; $L_R 5\alpha P11\beta 20\alpha^{***} + \Delta G_R^{\$}$
ш	5βΡ3β11β17α20α	1413	3150	732**	Calculated; $L_R 5\beta P3\beta 11\beta 20\alpha^{***} + \Delta G_R^{\$}$
IV	5αΡ3α11β17α20α	1409	3149	748**	Calculated; $L_R 5\alpha P3\alpha 11\beta 20\alpha^{***} + \Delta G_R^{s}$
v	5βP11β17a20a(3)	1452	3162	750**	Calculated; $L_R 5\beta P11\beta 20\alpha(3)^{***} + \Delta G_R^{s}$
VI	5βΡ3α11β17α20α	1416	3151	730**	SRC; prepared 2 h RD P6200; cf. Table I
VII	5αΡ11β17α20α(3)	1641	3215	762	Calculated; L_R 5 α P11 β 20 α (3)*** + ΔG_R [§]
VIII	Δ4Ρ3β11β17α20α	1683	3226	743**	Prepared; 2 h RD Δ4P17α20β(3,11); cf. Table I
IX	Δ5P3β11β17α20α	1782	3251	754	Prepared; 2 h RD Δ 5P3 β 17 α (11,20); cf. Table I
x	5αΡ3β11β17α20α	1841	3265	759	Prepared; 2 h RD 5α P17 α (3,11,20); cf. Table I
XI	Δ4Ρ11β17α20α(3)	1941	3288	757	Calculated; $L_R \varDelta 4P11\beta 20\alpha(3)^{***} + \varDelta G_R^{\$}$

* Average G_{R} -normal value = G_{R} P11 β 17 α 20 α = 757.

 G_R -odd steroid.

*** For L_R value, see Table XII of ref. 2.

 $^{\$} \Delta IG_{R} = 158, cf.$ Table XVI.

exceeded 90% after 30 min, and because at least 3 h of exposure to the reagents was necessary to bring these recoveries down to the levels R listed in Table II, losses indicated by R could not possibly arise exclusively from the degradation and extractive losses of the 17-keto products. Rather, they resulted mainly from a reaction involving a more reactive precursor of these compounds, possibly through fusion at the level of C-17 of two precursor molecules. The extreme broadness and late emergence of the GLC peak would make a dimer-size compound undetectable in small amounts. The apparent degradation of the 17-keto compound itself. The existence of an equilibrium between precursor and 17-keto compound largely favouring the latter would explain the comparatively slow decrease in recovery observed with the 17-keto compound as such.

All other conditions being as described above, yields increased markedly when the amount of NaBiO₃ was increased up to 10 mg, then slowly up to 15 mg. No further beneficial effect was observed up to 25 mg, possibly because larger quantities of NaBiO₃ made stirring and extraction of the reaction mixture less effective. Likewise stirring increased the reaction rate up to 250–300 rpm only.

The effect of varying the acetic acid concentration from 25 to 80% was not very

TABLE VII

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P20 β 21(11)

Steroid	1			Source(s)	
M	Abbreviation	t' _{NR}	L _R	G _R *	
I	5βΡ20β21(11)	· 867	2938	825**	Calculated; $L_R 5\beta P20\beta(11)^{***} + \Delta G_R^3$
и	5αP20β21(11)	973	2988	838	Calculated; $L_R 5\alpha P20\beta(11)^{***} + \Delta G_R^{5}$
III	5βΡ3β20β21(11)	1738	3240	838	Calculated; $L_R 5\beta P3\beta 20\beta(11)^{***} + \Delta G_R^{\$}$
IV	5αP3α20β21(11)	1738	3240	839	Prepared; 30 min RD 5α P3a21(11.20)
v	5βP20β21(3,11)	1690	3228	816**	Calculated; $L_R 5\beta P20\beta(3,11)^{***} + 21G_R^{\$}$
VI	5βΡ3α20β21(11)	1629	3212	791 **	Prepared; 30 min RD $5\beta P3\alpha 21(11.20)$
vн	5α̈P20β21(3,11)	1923	3284	831**	Calculated; $L_R 5\alpha P20\beta(3,11)^{***} + \Delta G_R^4$
VIII	⊿4P3β20β21(11)	2032	3308	825**	Prepared; 30 min RD
. IX	Δ5P3β20β21(11)	2163	3335	838	Calculated; $L_R \Delta 5P3\beta 20\beta(11)^{***} + \Delta G_R^{*}$
x	5aP3β20β21(11)	2228	3348	842	Prepared; 30 min RD $5\alpha P3\beta 21(11.20)$
XI	⊿4P20β21(3,11)	2188	3340	809**	Calculated; $L_R \Delta 4P20\beta(3,11)^{***} + \Delta G_R^3$

* Average G_R -normal value = G_R P20 β 21(11) = 839.

** G_R-odd steroid.

*** For L_R value, see Table IX of ref. 2.

 ${}^{\bullet} \Delta G_R = 328$; cf. Table XVI.

marked, the optimal plateau stretching from 45 to 65%. In all cases, the volume of 25% (w/v) NaOH added to the reaction mixture provided 75% neutralization⁵. The density of the neutralized reaction mixture being much higher than that of the solvent, a clean centrifugal separation was obtained, but vigorous stirring and several extractions were needed for highest recovery. The volume of benzene used had to be kept at or below 600 μ l, and the total volume below the 1-ml mark to prevent losses due to splashing while stirring with the vortex mixer.

No beneficial effect accrued from working under nitrogen or in complete darkness.⁵

The recoveries listed in Table II were obtained with $10-\mu g$ samples of steroid. A slow decrease down to about half of these values was observed as the amount of steroid was lowered to 50 ng. The NaBiO₃ test was still sensitive, however, because the products gave narrow peaks in the early section of the GLC chromatogram. For example, 1 ng of androsterone gave a 50-mm peak at full sensitivity. The sensitivity of the test was lowest with $\Delta 4A$ (3,17), $\Delta 4A$ (3,11,17), and $\Delta 4A11\beta$ (3,17) because corresponding peaks had a tendency to flatten and shift upscale at low level^{1.8}. Improved sensitivity was obtained in this case by analyzing the $\Delta 4A3\beta17\beta$ compounds obtained by RD of the products or the $\Delta 4A3\beta(17)$ products of the RD-subjected steroids.

TABLE VIII

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P11 β 20 β 21

Steroid				Source(s)	
M	Abbreviation	t'_{NR}	L_R	G _R *	
I	5βΡ11β20β21	940	2973	860**	Calculated; $L_R 5\beta P11\beta 20\beta^{***} + \Delta I G_R^{s}$
II	5αΡ11β20β21	1064	3027	877	Calculated; $L_R 5\alpha P11\beta 20\beta^{***} + \Delta G_R^{s}$
111	5βΡ3β11β20β21	1858	3269	867**	Calculated; $L_R 5\beta P3\beta 11\beta 20\beta^{***} + \Delta G_R^{s}$
IV	5aP3a11β20β21	1870	3272	870**	Prepared; 2 h RD 5αP3α21(11,20); cf. Table I
v	5βP11β20β21(3)	1897	3278	866**	Calculated; $L_R 5\beta P11\beta 20\beta(3)^{***} + \Delta G_R^{s}$
VI	5βΡ3α11β20β21	1766	3247	826**	Prepared; 2 h RD 5βP3α21(11,20); cf. Table I
VII	$5\alpha P11\beta 20\beta 21(3)$	2178	3338	880	Calculated; $L_R 5a P11\beta 20\beta(3)^{***} + \Delta G_R^{\$}$
VIII	Δ4P3β11β20β21	2254	3353	870**	Prepared; 2 h RD \varDelta 4P21(3,11,20) + $\varDelta G_{R}^{s}$
IX	Δ5Ρ3β11β20β21	2388	3378	881	Calculated; $L_R \Delta 5P3\beta 11\beta 20\beta + \Delta G_R^{\delta}$
х	5αΡ3β11β20β21	2460	3391	885	Prepared; 30 min RD $5\alpha P3\beta 21(11,20);$ <i>cf.</i> Table I 2 h RD $5\alpha P3\beta 11\beta 21(20);$ <i>cf.</i> Table I
XI	Δ4P11β20β21(3)	2582	3412	883	Calculated; $L_R \Delta 4P11\beta 20\beta^{***} + \Delta G_R^3$

* Average G_R -normal value = $G_R P11\beta 20\beta 21 = 881$.

** G_R-odd steroid.

*** For L_R value, see Table XI of ref. 2.

 ${}^{\bullet} \Delta G_R = 328$; cf. Table XVI.

G_R and ΔG_R data

The G_R data in Tables III, IV, VII, and X show that the pattern of G_R -odd steroids in groups featuring (11) is characteristic and different from the characteristic pattern in groups featuring 11β (cf. Tables V, VI, VIII, IX and XII). A comparison with data previously discussed^{1,2} shows that, indeed, the patterns corresponding to (11) and 11β are unique.

Table XVI shows ΔG_R values calculated by eqn. 3 for groups listed in column 1 and the groups indicated in rows — from G_R values shown between parentheses under group designations. The ΔG_R values listed in the column are the differences between G_R values of group pairs to which 226 was added with groups of the androstane series (cf. eqn. 17 of ref. 1).

The mean differences, ΔG_R of L_R values for *M*-corresponding 20*a* and 20 β isomers, including those previously observed²⁻⁴, are presented in Table XVII for comparison. Obviously, ΔG_R varies from group to group. While the introduction of (11) or 11 β exerts an unpredictable influence, it does not affect the reversal in order of

TABLE IX

VALUES OF L_R AND G_R , AND SOURCE OF STEROIDS OF GROUP P11 β 20 α 21

Steroid	i		Source(s)		
M	Abbreviation	ť _{NR}	L _R	G _R *	
I	5βP11β20α21	912	2960	847**	Calculated; $L_R 5\beta P11\beta 20\alpha^{***} + \Delta G_R^3$
11 .	5αP11β20α21	1016	3007	857	Calculated; L_R 5 α P11 β 20 α^{***} + ΔG_R^{i}
ш	5βΡ3β11β20α21	1799	3255	853**	Calculated; L_R 5 β P3 β 11 β 20 α^{***} + ΔG_R^{s}
IV	5αP3α11β20α21	1795	3254	853**	Prepared; 2 h RD 5αP3α21(11,20); cf. Table I
v	5β P11 β 20 α 21(3)	1845	3266	854**	Calculated; $L_R 5\beta P11\beta 20\alpha(3)^{***} + \Delta G_R^{s}$
VI	5βΡ3α11β20α21	1656	3219	798**	Prepared; 2 h RD 5β P3 α 21(11,20); cf. Table I
VII	5αP11β20α21(3)	2084	3319	866	Calculated; $L_R 5\alpha P11\beta 20\alpha(3)^{***} + \Delta G_R^{\$}$
VIII	Δ4 P 3β11β20α21	2133	3329	846**	Prepared; 2 h RD / 4P21(3,11,20)***; cf. Table I
IX	Δ5Ρ3β11β20α21	2270	3356	859	Calculated; $L_R \Delta 5P3\beta 11\beta 20\alpha^{***} + \Delta G_R^{5}$
x	5aP3β11β20a21	2355	3372	866	Prepared; 30 min RD $5\alpha P3\beta 21(11,20);$ <i>cf.</i> Table I 2 h RD $5\alpha P3\beta 11\beta 21(20);$ <i>cf.</i> Table I
XI	Δ4P11β20α21(3)	2472	3393	862	Calculated; $L_R \varDelta 4P11\beta 20\alpha(3)^{***} + \varDelta G_R^{s}$

* Average G_R -normal value = G_R P11 β 20 α 21 = 862.

** G_R-odd steroid.

*** For L_R value, see Table XII of ref. 2.

 ${}^{s} \varDelta G_{R} = 262$; cf. Table XVI.

appearance of peaks indicated by a negative ΔG_R value for groups which feature 21-OH.

Using eqn. 4, the L_R values of steroids listed in column 1 of Table XVIII were calculated, and the errors between calculated and observed values were entered in columns below the designations of the relevant groups. Because only errors obtained from experimental L_R values are significant in this test, steroids for which a complete set of significant values was unavailable were not included in column 1. Steroids of particular *M*-configurations, therefore, are not represented by these data. It should be noted, however, that observed L_R data on steroids featuring these *M*-configurations and belonging to all groups designated in columns 2–7 of Table XVIII were used in refs. 1 and 2 to demonstrate the validity of eqn. 4 by the same test.

It is evident that very small errors, never exceeding $\pm 3 L_R$ units, resulted from the use of eqn. 4 for L_R values calculations, except in the case of $5\beta P3a$ -steroids, for which the errors were large^{1,2}. However, errors observed with the $5\beta 3a$ -steroids corresponding to columns 2-5 were so uniform (± 2) that the following corrections could

TABLE X

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P17a20 β 21(11)

Steroid				Source(s)	
M	Abbreviation	t' _{NR}	L _R	G _R *	
I	5βΡ17α20β21(11)	1167	3067	956**	Calculated; $L_R 5\beta P20\beta(11)^{***} + \Delta G_R^{\$}$
II	5αP17α20β21(11)	1309	3117	967	Calculated; $L_R 5\alpha P20\beta(11)^{***} + \Delta G_R^{\$}$
III	5βΡ3β17α20β21(11)	2339	3370	969	Calculated; $L_R 5\beta P3\beta 20\beta(11)^{***} + \Delta G_R^{4}$
IV	5αΡ3α17α20β21(11)	2344	3370	969	Calculated; $L_{R} 5\alpha P3\alpha 20\beta(11)^{***} + \Delta G_{R}^{4}$
v	5βΡ17α20β21(3,11)	2275	3357	945**	Calculated; $L_R 5\beta P20\beta(3,11)^{***} + \Delta G_R^{\$}$
VI	5βΡ3α17α20β21(11)	2218	3346	925**	P9200; prepared 30 min RD P7100 and P9550
VII	$5\alpha P17\alpha 20\beta 21(3,11)$	2588	3413	960**	Calculated; $L_R 5\alpha P20\beta(3,11)^{***} + \Delta G_R^{5}$
VIII	Δ4P3β17α20β21(11)	2733	3436	953**	Prepared; 30 min RD \varDelta 4P17 α 21(3,11,20)
IX	Δ5P3β17α20β21(11)	2911	3464	967	Calculated; $L_R \Delta 5P3\beta 20\beta(11)^{***} + \Delta G_R^{4}$
x	5αP3β17α20β21(11)	3010	3478	972	Prepared; 30 min RD $5\alpha P3\beta 17\alpha 21(11,20)$
XI	Δ4P17a20β21(3,11)	2944	3469	938**	Calculated; $L_R \varDelta 4P20\beta(3,11)^{***} + \varDelta G_R^{5}$

* Average G_R -normal value = $G_R P17\alpha 20\beta 21(11) = 969$.

** G_R-odd steroid.

*** For L_R value, see Table IX of ref. 2.

 ${}^{\diamond} \Delta G_{R} = 457$; cf. Table XVI.

be used successfully: $-28 L_R$ units for (11)-featuring steroids, $-27 L_R$ units for 11 β 20 β -steroids, and -19 with 11 β 20 α -steroids. Thus, at least for these 5 β 3 α steroids, the extent of excess oddity^{1,2} also is predictable. Obviously, this is not so for the other $5\beta 3\alpha$ -steroids. However, samples of $5\beta 3\alpha$ -steroids are among the most easily obtainable, either as such or by RD of appropriate keto-steroids.

As the above results show, the L_{R} values of heavily substituted steroids can be accurately calculated from the L_R value of any less substituted, M-corresponding steroid of a related group, and vice versa. These results therefore confirm the principle of constancy of oddity previously enunciated², and the reliability, and versatility of a method of L_{R} value calculation based on eqn. 4. Conversely, this method allows a preliminary determination of structure to be made from retention time data.

Ambiguities that may arise in cases when two or more steroids of different structure have the same, or nearly the same retention time are often dispelled by the TLC data. In our systematic analysis of steroids, TLC is used as a preliminary separation step to obtain several fractions within precisely determined boundaries¹. Hence, aside from making a subsequent GLC separation of the fraction components possible, this procedure also supplies TLC data on these components which may be decisive in the identification process. The corticosteroids, for example, are found in neatly

TABLE XI

VALUES OF LR AND GR, AND SOURCES OF STEROIDS OF GROUP P11617a20621

Source(s)
R
$\begin{array}{c} \hline \\ 010^{**} & \text{Calculated}; L_R 5\beta P11\beta 20\beta^{***} + \\ \Delta G_R^{\$} \end{array}$
027 Calculated; $L_R 5\alpha P11\beta 20\beta^{***} + \Delta G_R^{*}$
013** P8620
021 Calculated; $L_R 5\alpha P3\alpha 11\beta 20\beta^{***} + \Delta G_R^{\$}$
016** Calculated; $L_R 5\beta P11\beta 20\beta(3)^{***} + \Delta G_R^3$
981** P8590; prepared 2 h RD P9550 and P7100; cf. Table I
035 Calculated; $L_R 5\alpha P11\beta 20\beta(3)^{***} + \Delta G_R^{\frac{1}{2}}$
020** Prepared; 2 h RD Q2500; cf. Table I
029 Prepared; 2 h RD Q5790; cf. Table I
034 Q4350; prepared 2 h RD P5200; cf. Table I
033 Q3790

* Average G_R -normal value = $G_R P11\beta 17\alpha 20\beta 21 = 1032$.

** G_R -odd steroid.

*** For L_R value, see Table XI of ref. 2.

⁵ $\varDelta G_R = 478$; cf. Table XVI.

TABLE XII

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP P11 β 17 α 20 α 21

Steroid	d				Source(s)
M	Abbreviation	t' _{NR}	L_R	G _R *	
I	5βΡ11β17α20α21	1279	3107	994**	Calculated; $L_R 5\beta P11\beta 20\alpha^{***} + \Delta G_R^3$
11	5αP11β17α20α21	1426	3154	1004	Calculated; L_R 5aP11 β 20a ^{***} + ΔI_{G_R} [§]
III	5βΡ3β11β17α20α21	2523	3402	1000**	Calculated; $L_R 5\beta P3\beta 11\beta 20\alpha^{***} + \Delta G_R^{i}$
IV	5αΡ3α11β17α20α21	2518	3401	1002**	Calculated; $L_R 5\alpha P3\alpha 11\beta 20\alpha^{***} + \Delta G_R^3$
v .	5βΡ11β17α20α21(3)	2588	3413	1000**	Calculated; $L_R 5\beta P11\beta 20\alpha(3)^{***} + \Delta G_R^{1}$
VI	5βΡ3α11β17α20α21	2433	3386	965**	SRC; prepared 2 h RD P9550 and P7100; cf. Table I
VII	$5\alpha P11\beta 17\alpha 20\alpha 21(3)$	2924	3466	1013	Calculated; $L_R 5\alpha P11\beta 20\alpha(3)^{***} + \Delta G_R^4$
VIII	Δ4P3β11β17α20α21	3000	3477	994**	Prepared; 2 h RD Q2500; cf. Table I
IX	⊿5P3β11β17α20α21	3180	3502	1005	Prepared; 2 h RD Q5790; cf. Table I
х	5αΡ3β11β17α20α21	3295	3518	1012	Prepared; 2 h RD P5200; cf. Table I
XI	Δ4P11β17α20α21(3)	3467	3540	1009	Q3760

* Average G_R -normal value = G_R P11 β 17 α 20 α 21 = 1007.

** G_R-odd steroid.

*** For L_R value, see Table XII of ref. 2.

 $^{4}\Delta G_{R} = 409$; cf. Table XVI.

TABLE XIII.

Steroid	d				Source(s)
M	Abbreviation	ť _{NR}	L _R	<i>G</i> _{<i>R</i>} **	
I	5βA(17)	140.5	2148	261	Prepared; cf. ref. 1
п	5aA(17)	154	2187	263	SRC
III	5\$A3\$(17)	276	2441	266	A3670
IV	5aA3a(17)	275	2439	264	A2420
v	5βA(3,17)	279	2445	261	A3270
VI	5βΑ3α(17)	288.5	2460	267	A3610
VII	5aA(3,17)	309	2489	261	A1630
VIII	Δ4A3β(17)	331	2520	263	Calculated; $M_R \varDelta 4A3\beta + G_R(17)^{**}$
IX	Δ5A3β(17)	337	2528	259	A8500
x	$5\alpha A3\beta(17)$	348	2542	263	A2490

261

A8090

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP A(17)*

* Cf. Table IX of ref. 1.

⊿4A(3,17)

** Average G_R -normal value = $G_R A(17) = 263$.

368

TABLE XIV

XI

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP A(11,17)*

2566

Steroid	1				Source(s)
M	Abbreviation	ť _{NR}	L _R	<i>G</i> _{<i>R</i>} **	
I	5βA(11,17)	177	2248	361	Prepared *
II	5αA(11,17)	194	2287	363	Prepared*
III	5βΑ3β(11,17)	343	2535	361	Calculated; $M_R 5\beta A3\beta^* + G_R (11,17)^{**}$
IV	5aA3a(11,17)	342	2534	359	A2280
v	5βA(3,11,17)	336	2526	342***	A4010
VI	$5\beta A3\alpha(11.17)$	348	2541	348***	A346C
VII	5αA(3,11,17)	379	2578	350***	Prepared*
VIII	$\Delta 4A3\beta(11.17)$	398	2599	342***	Calculated *
IX	∆5A3B(11,17)	424	2627	358	SRC
x	$5\alpha A3\beta(11,17)$	440	2643	364	Prepared*
XI	⊿4A(3,11,17)	426	2629	324***	Calculated *

* Cf. Table V of ref. 1.

** Average G_R -normal value = $G_R A(11,17) = 361$.

*** G_R -odd steroid.

TABLE XV

VALUES OF L_R AND G_R , AND SOURCES OF STEROIDS OF GROUP A11 β (17)*

Steroid	1				Source(s)
M	Abbreviation	ť _{NR}	Ĺ _R	<i>G</i> _{<i>R</i>} **	
I	5βΑ11β(17)	224	2350	463***	Prepared*
II	$5\alpha A11\beta(17)$	251	2399	475	Calculated*
III	5βΑ3β11β(17)	440	2643	468***	Calculated*
IV	$5\alpha A3\alpha 11\beta(17)$	431	2634	459***	A1330
Ý	- 5βA11β(3,17)	441	2644	460***	Prepared *
VI	$5\beta A3\alpha 11\beta(17)$	442	2645	452***	A3120
VII	$5\alpha A11\beta(3,17)$	503	2704	476	A2360
VIII	Δ4A3β11β(17)	523	2720	463***	Calculated*
IX	Δ5A3β11β(17)	558	2746	477	Calculated*
X	5αΑ3β11β(17)	571	. 2757	478	A1500
XI	Δ4A11β(3,17)	601	2779	474	A6630

* CE Table VI of ref. 1.

** Average G_8 -normal value = G_8 At $i\beta(i7) = 477$.

GR-odd storoid.

TABLE XVI <i>AG_R</i> values [*]			·								
Group (a)	Ciroup	(9)									And it is a married of the second process of the second second second second second second second second second
	A(11) (150)	A(11,17) (361)	A17B(11) (507)	P(11) (156)	P(11,20) (370)	P20ß(11) (511)	$\frac{P20\alpha(11)}{(523)}$	P17α20β(11) (688)	P20/h21(11) (839)		
$P17a20\beta(11)$ (654)	730	519	374	498	283	141		654			Name and a state of the state o
P17a204(11) (000) P20\$21(11) (839) P17a20\$21(11) (969)	917 1046	706 835	561 690	685 814	469 598	328 457	100	315	130		
	A11B (222)	A11β(17) (477)	АПВІТВ (568)	P11β (222)	P11β(20) (464)	<i>P11β20β</i> (555)	P11β20α (599)	P11β17α20β (723)	P11/20/321 (881)	P11β17u20u (757)	P11β20α21 (862)
$P11\beta17a20\beta$ (723)	726	472	381	498	257	168					
(167) (187) (197) (181) PI (20) (20) (20) PI (20) (20) (20)	886	631	542	659	417	328	158				
F11/20021 (002) P11/817a20/821 (1032) P11/817a20a21 (1007)	1037 1013	783 758	690 667	809 786	568 545	478 453	262 409	308	150	252	147
* ΔG_R (a, b) = L_R This table gives the aver for groups P20/P21(11) at (b), respectively. The G (a, b) = G_R (a) $- G_R$ (f * L_R values corresp A(11), A11 β , A17 β (11) a P11 β (20), P20 β (11), P20	(a) $-L_{i}$ age ΔG and P20 β <i>n</i> values (b) + 226 (c) + 226	${}_{\alpha}$ (b), cf. eqn ${}_{\alpha}$ value for s are given ii are given ii (cf. eqn. 17 fo (cf. eqn. 17 f) β_{α} sce Ta $\beta_{17}\beta_{\gamma}$ sce Ta	. 13 (ref. 1) tetroids of (These values in parenthese ref. 1). (11,17) and bles 111, 1V, bles 111, 1V, bles 111, 1V, bles 111, 20 α ,	, where group (a group (a closely es besid All β (1 VII, an see Tab	L_{R} (a) and J, listed in J, listed in approximate or below c or below d VIII of relates V-XII of relate	L_n (b) are L column 1, a te G_n (a) – the corrosp the corrosp af in Tables af. 1, respect of ref. 2, res	$_{R}$ values of nd group (I G_{R} (b), whe onding grou onding grou viety. For L viety. For L pectively.	<i>M</i> -correspondi (M -correspondi G_R (a) and G aps. When gro V, respectively. R values corresp	ng steroids in ws. For example, a (b) are the $tup (b) is of tFor L_R valueconding to gr$	related groups G_R values of gr he androstane he androstane scorrespondii oups P(11), P1	(b) and (b) $e AG_n$ value oups (a) and oups (a) and series, AG_n is to groups 1β , P(11,20),

122

.

F. A. VANDENHEUVEL

.

TABLE XVII

MEAN DIFFERENCES, ΔG_R , OF L_R VALUES FOR *M*-CORRESPONDING 20 α - AND 20 β -STEROIDS

Group		ΔG_R^*	Source
Ρ20α	Ρ20β	+28	Table XVIII of ref. 2
Ρ20α(11)	$P20\beta(11)$	+13	
Ρ11β20α	Ρ11β20β	+49	
Ρ17α20α	Ρ17α20 β	+24	Table XIV of ref. 4
Ρ20α21	P20/21	-23	
Ρ17α20α21	Ρ17α20β21	-21	
Ρ17α20α(11)	Ρ17α20β(11)	+38	Calculated from present data; see Tables III-VI,
Ρ11β17α20α	$P11\beta 17\alpha 20\beta$	+38	VIII and IX, and XI and XII
Ρ11β20α21	Ρ11β20β21	-18	
Ρ11β17α20α21	Ρ11β17α20β21	-20	

 ΔG_R is expressed in L_R units. For specific *M*-configurations, the deviation from the mean ΔG_R value, ε (cf. Table XVIII of ref. 2) should be added to G_R . The only exception to this rule is the large ΔG_R , +55, for $5\beta P3\alpha 11\hat{\beta}17\alpha 20\alpha$ and $5\beta P3\alpha 11\beta 17\alpha 20\beta$ (cf. Tables XI and XII).

separated TLC fractions in order of decreasing polarity, as shown by the corresponding R_b values of $\Delta 4P$ -corticosteroids in brackets:

 Δ 4P11 β 17a21 (3,20), cortisol [0.142]

△4P17a21 (3,11,20), cortisone [0.300]

 Δ 4P11 β 21 (3,20), corticosterone [0.388]

Δ4P17a21 (3,20), cortexolone [0.468]

△4P21 (3,11,20), dehydrocorticosterone [0.660]

△4P21 (3,20), cortexone [0.832]

Further decisive structural information is gained by the application of appropriate discriminatory tests based on the use of reactions described in the present series. Such tests are very sensitive, often requiring less material than is needed to produce high-resolution mass spectra for positive identification and, therefore, requiring less extensive and time-consuming preparative effort. While this advantage is appreciable when dealing with the very low steroid levels found in animal blood and tissues, the operating costs of the method are also much lower². Last, but not least, the method does not require samples of standard steroid for comparison because both the preliminary and the final identification can be made directly from predictable TLC and GLC properties. Hence, with this method, the current unavailability of many steroid standards no longer constitutes a serious obstacle to the systematic analysis of these compounds.

The simplicity of the method contrasts with the complexity of the present, extensive investigation on which it is based. This is evident, for example, from the essential GLC requirements for its effective application, namely: (1) a strict adherence to the type of non-polar column and conditions selected, including the use of two internal standards¹ and (2) standardization of the column, *i.e.*, determination of ΔG_R values from readily available steroid standards by rapid, systematic procedures as described in ref. 1.

Steroid	Error on	L _R values				ra bu pana mu naga se ang		والمراجع
	A(11)	A(11,17)	P(11)	P(11,20)	A17B(11)	P20B(11)	P17a20ß(11)	P20\$21(11)
5/P3a17a20/21(11)	+26	+30	+30	+28	+15	+17	+16	4
A4P3/J17a20/21(11) 5aP3/J17a20/21(11)	0 I	0 17			0 <u>-</u> 	 + 1	0 7 +	0 0 +
	\$11V	AIIB(17)	βIIA	P11B(20)	ΑΙΙβΙΤβ	PIIA20A	P11β17u20β	P11\$20\$21
58P3a11/17a20/21	+27	+26	+29	+25	+ 2	+14	+ 2	- 5
Δ4Ρ3β11β17α20β21 Δ5 Ρ 2811817α20β21	- °	0 6	~ - ~ -	- 1	- 1 - 1	0 r -	- 1	0
5aP3\$11\$17a20\$21	• - +-	- 0 -	 - +	- 0	- 0	1 M + +	 + 1	7 - + +
	AIIB	A11B(17)	BIIB	P11β(20)	ΑΙΙβΙΖβ	P11 \$20a	P11/317a20a	P11\$20a21
5 <i>\B3a</i> 11 <i>\B17a20a2</i> 1	+19	+17	+22	+18	- 5	+15	+17	-20
Δ4Ρ3β11β17α20α21	- +	+ 1	- +	- +	+ +	0	+	
Δ5Ρ3β11β17α20α21	+ 7	+ 2	+ 7	+ +	+ 2	1 +	+ 1	+ 1
5aP3f11f17a20a21		 G	0			1 	- 1	- +
A4P11β17α20a21(3)	7 1	۲ ۳	ب ا	1 1	ر ا	 1	0	0
* Expressed in L _R	units.	U = 1 = (P) = 70	. (ean 15 o	f raf 1) where I	(h) is tha I	on M adi Ja	bionoto anibuonen	and botological set
mana manus ya			R (equal to 5		Wrr nin ei (n) H			III HIG IGIAIGU BLUUD

indicated in the row, and ΔG_{R} is the appropriate value taken from Table XVI. L_{R} values of steroids of groups A(11,17) and A11 $\beta(17)$ are listed in Tables XIV and XV, respectively. L_n values of steroids of groups P17a20 $\beta(11)$, P11 $\beta17a20\beta$, P11 $\beta17a20a$, P20 $\beta21(11)$, P11 $\beta20\beta21$, and P11 $\beta20a21$ are listed in Tables III-IX, respectively. For L_n values of steroids of groups A(11), A11*β*, A17*β*(11), and A11*β*17*β*, see Tables III, IV, VII, and VIII of ref. 1, respectively. For L_R values of steroids of groups P(11), P11 β , P(11,20), P11 β (20), P20 β (11), P11 β 20 β , and P11 β 20 α , see Tables V, VI, VII, VIII, IX, XI, and XII of ref. 2, respectively. ... L_{R} values of steroids of these groups are listed in Tables X, XI, and XII, respectively.

TABLE XVIII

GLC STUDIES OF STEROIDS. V.

By ensuring an excellent reproducibility and reliability of L_R data, the refined techniques which help to meet the first requirement also considerably reduce the amount of work required for effective operation. Once acquired, L_R and ΔG_R values constitute a set of permanent, reliable constants characteristic of the system

ACKNOWLEDGEMENTS

We are grateful to Dr. D. F. Johnson, National Institute of Health, Bethesda, Md., U.S.A., and to Professor W. Klyne and Dr. D. N. Kirk of Westfield College, London, Great Britain, for numerous samples from the Steroid Reference Collection.

REFERENCES

- 1 F. A. Vandenheuvel, J. Chromatogr., 96 (1974) 47.
- 2 F. A. Vandenheuvel, J. Chromatogr., 103 (1975) 113.
- 3 F. A. Vandenheuvel, J. Chromatogr., 105 (1975) 359.
- 4 F. A. Vandenheuvel, J. Chromatogr., 115 (1975) 161.
- 5 C. J. W. Brooks and J. K. Norymberski, Biochem. J., 55 (1953) 371.
- 6 W. Nowaczinski, M. Goldner, J. Genest, P. Mavraux and L. Langevin, J. Lab. Clin. Med., 45 (1955) 818.
- 7 H. Breuer and L. Nocke, Z. Vitam. Horm. Fermentforsch., 9 (1957) 28.
- 8 F. A. Vandenheuvel and A. S. Court, J. Chromatogr., 39 (1969) 1.