GAS-LIQUID CHROMATOGRAPHIC STUDIES OF REACTIONS AND STRUCTURAL RELATIONSHIPS OF STEROIDS

V. CONCURRENT SUBSTITUTION IN THE PREGNANE SIDE-CHAIN AND POSITION 11*

FRANTZ A. VANDENHEUVEL
Animal Research Institure, Research Branch, Canada Department of Agriculure, Ottawa, Ontario Kl/ A 0C6 (Canada)

(Received August 30th, 1976)

SUMMARY

Qualitative and quantitative effects of classical reactions on steroids observed by gas-liquid chromatography (GLC) under standardized conditions, including the double internal standard technique, are reported. Simple procedures applicable to nanogram amounts of reactants are described. Reactions studied include the conversion of keto groups to hydroxyl groups by NaBH_{4}, and the removal of the pregnane side-chain with NaBiO_{3}. GLC chromatograms readily provide information on effects on functional groups at positions $3,11,17,20$, and 21 and the retention times of many steroids unavailable from commercial sources. GLC data analysis provides relationships hetween steroid structure and retention time from which methods for the computation of retention times and steroid identification are designed. The accuracy of these methods is demonstrated.

INTRODUCTION

The fifth in a series of articles ${ }^{1-4}$ dealing with reactions and structurally dependent chromatographic properties of steroids, the present communication concerns groups of steroids which include very important corticosteroid hormones and metabolites. The steroids of concern are related to those dealt with in Part IV ${ }^{4}$. Table II, column 4, shows that at least one gas-liquid chromatographic (GLC) property of $17 \alpha, 21(20)$-steroids is not altered by the introduction of (11) or 11β, viz., their propensity to decompose under GLC conditions. Thermal stability is observed, however, for all other steroids of these groups, including those with a fully reduced side-chain, the $17 \alpha, 20 \alpha, 21$ - and $17 \beta, 20 \beta, 21$-steroids. Understandably, full reduction of the sidechain will reveal the presence of thermally unstable species. For this and other reasons discussed below, the facile reduction by sodium borohydride (RD) ${ }^{\mathbf{1}}$ is a very important

[^0]tool in detecting, estimating, and identifying the steroids of concern. Hence, results obtained by applying this reaction are fully described in Table I^{*}.

In Part IV ${ }^{4}$, a study of CrO_{3}-pyridine reaction with parent steroids substituted in the side-chain had shown that little information useful for the purpose of identification could be derived from the products. Similar results were obtained with the 11 substituted parent compounds. In contrast, sodium bismuthate oxidation (NaBiO_{3}) produced high yields, generally of a single product characteristic of the original steroid ${ }^{5}$.

The present article reports in Table II the results of an extensive investigation of this reaction with all types of steroids substituted in the side-chain, including those not substituted at position 11. The normal products with this last category of steroids are described in Table XIII. GLC data on the normal products of (11)- and 11β-substituted steroids are given in Tables XIV and XV, respectively.

In Part IV ${ }^{4}$, the normalcy ${ }^{1}$ of retention time $t^{\prime}{ }_{N R}$, of steroids substituted in the side-chain, though not at position 11 , was shown to be a general feature. For these compounds, the L_{R} value expressed by

$$
\begin{equation*}
L_{R}=10^{3} \times \log t_{N R}^{\prime} \tag{1}
\end{equation*}
$$

is the sum of two constants

$$
\begin{equation*}
L_{R}=M_{R}+G_{R} \tag{2}
\end{equation*}
$$

where G_{R} is characteristic of the group to which the steroid belongs, and M_{R} a value characteristic of the structure of ring $A . M_{R}$ values are listed in Table I of ref. 4. Thus the M_{R} value for steroids with the same ring A or M-features is identical by definition. Hence the difference $\Delta G_{R}(a, b)$ of the L_{R} values, $L_{R}(a)$ and $L_{R}(b)$, for M-corresponding steroids in groups (a) and (b), is given by the difference of the corresponding \boldsymbol{G}_{R} values, as follows from eqn. 2

$$
\begin{equation*}
\Delta G_{R}(\mathrm{a}, \mathrm{~b})=L_{R}(\mathrm{a})-L_{R}(\mathrm{~b})=G_{R}(\mathrm{a})-G_{R}(\mathrm{~b}) \tag{3}
\end{equation*}
$$

As shown in refs. 1-3, deviations of G_{R} indicating oddity occur for certain steroids of the same group as a result of 11 -substitution. However, it was shown also that such deviations are identical in sign and size for M-corresponding steroids, and that eqn. 3 , therefore, is still applicable to odd steroids ${ }^{1-4}$. Hence, the L_{R} value of any steroid, L_{R} (a), can be calculated from the known value $L_{R}(b)$ of an M-corresponding steroid featuring the same substitution at position 11 by

$$
\begin{equation*}
L_{R}(\mathrm{a})=L_{R}(\mathrm{~b})+\Delta G_{R}(\mathrm{a}, \mathrm{~b}) \tag{4}
\end{equation*}
$$

Here $\Delta G_{R}(a, b)$ is characteristic of groups (a) and (b) and readily calculable by eqn. 3 given any pair of L_{R} values $L_{R}\left(\right.$ a) and L_{R} (b) for M-corresponding steroids of these groups (Table XVI).

[^1]The present GLC data on 11 -substituted steroids, together with similar data from Parts I^{1}, I^{2}, and IV^{4}, were used to test the accuracy of L_{R} values calculated by eqn. 4 (Table XVIII).

As shown in the discussion, the wide range of applicability and the reliability of this method of calculation thus demonstrated allow the retention time of steroids of given structure to be accurately predicted. The use of this method of calculation, together with the application of selected reactions whose products are characteristic of the given structure therefore permits the unequivocal identification of a steroid to be made even when a sample of the compound is unavailable. The advantages of this novel approach for the systematic analysis of steroids are discussed.

EXPERIMENTAL

Reactions

Procedures used for the RD and the trimethylsilyl (TMS) derivatization of hydroxyl groups have been described in detail ${ }^{1}$.

The procedure used for sodium bismuthate $\left(\mathrm{NaBiO}_{3}\right)$ oxidation was as follows: From 0 to $25 \mu \mathrm{~g}$ of steroid were placed in a $1-\mathrm{ml}$ volumetric-flask (Corning tube No. 5640) by adding with a microsyringe the required volume of solution in methanol and evaporating the solvent under nitrogen. To the contents were added successively, $15 \pm 1 \mathrm{mg}$ of NaBiO_{3} (Analar; BDH, Toronto, Canada), a $1 / 8 \mathrm{in} . \times 1 / 2 \mathrm{in}$. PTFE covered micro-magnet (Fisher No. 9-312-102), and $120 \mu \mathrm{l}$ of $50 \%(\mathrm{w} / \mathrm{v})$ aqueous acetic acid. The tube was placed in a holder over a strong magnetic stirrer (Gyrathron, Bronwill Scientific Model 25210) adjusted to 350 rpm .

The holder consisted of two 10 cm diameter, 20 mm thick disks of styrofoam glued together face to face after one of the disks had been punched with a No. 4 cork borer to produce a series of $8-\mathrm{mm}$ holes right through and 20 mm from its center. Up to ten tubes held in these holes in a vertical position could be processed simultaneously.

After 30 min of stirring at room temperature, $120 \mu \mathrm{l}$ of 25% aqueous NaOH were added dropwise to the tube, which was stirred for 1 min . Using a 3 cm long bar magnet, the micro-magnet was made to slide up the side to the neck of the tube where it was seized at one end with tweezers, and held just above the mouth of the tube. It was washed in this position with $600 \mu \mathrm{l}$ of benzene added dropwise, the washings being collected in the tube. After 1 min of vigorous stirring with a vortex mixer, the mixture was centrifuged for 1 min . The clear supernatant (solvent) was carefully removed with a $1-\mathrm{ml}$ syringe (point style No. 3, gauge 22 needle). The extraction with $600 \mu \mathrm{l}$ of benzene was repeated three times. The combined extracts (2.4 ml) were brought, either by, dilution or evaporation depending on the concentration, to such a volume that a $50-\mu \mathrm{l}$ sample contained enough material for GLC analysis. The sample was evaporated to dryness under nitrogen and submitted to TMS derivatization.

Gas-liquid and thin-layer chromatography

Both gas-liquid and thin-layer chromatography (TLC) methods were used as previously described ${ }^{1-4}$. All $t^{\prime}{ }_{N R}$ values were obtained with steroids or steroid mixtures submitted to TMS derivatization.

DISCUSSION

Reactions

Reduction by NaBH_{4}. RD is as shown in Table I. The behaviour of steroids substituted at position 11 paralleled that of the parent steroids described in Table II of Part IV ${ }^{4}$. High yields of 20α and 20β products giving excellent GLC chromatograms after TMS derivatization were observed even when the original (20)-steroid was thermally unstable and did not give a GLC peak. While the 20β product again was the major one in all cases, the $20 \alpha / 20 \beta$ ratios did not differ as sharply among different groups as they did with the corresponding groups of parent steroids ${ }^{4}$. However, the 21-hydroxyl group again reversed the order of appearance of the GLC peaks of the 20α - and 20β steroids, as shown by the $t^{\prime}{ }_{N R}$ values listed in Tables V and VI, VIII and IX, and XI and XII.

TABLE I
REDUCTION BY $\mathrm{NaBH}_{4}(2 \mathrm{~h})$ OF 11 -SUBSTITUTED 20-KETONES

Starting material				Normal product*	
Abbreviation	Source	GLC properties		$\begin{aligned} & 20 \alpha / 20 \beta \\ & \text { ratio } \end{aligned}$	GLC properties
		$t_{N R}^{\prime}$	L_{R}		
$5 \beta \mathrm{P} 3 \alpha 17 \alpha(11,20)$	P6200	783	2894	17/83	cf. Tables V (β)
$5 \alpha \mathrm{P} 17 \alpha(3,11,20)$	P4100	905	2956	18/82	and VI (α)
$\triangle 5 \mathrm{P} 3 \beta 17 \alpha(11,20)$	SRC	989	2995	17/83	
$\triangle 4 \mathrm{P} 11 \beta 17 \alpha(3,20)$	Q1520, SRC	1417	3151	19/81	
				18/82	
$5 a \mathrm{P} 3 \sim 21(11,20)$	P2200	1244	3095	15/85	$\begin{aligned} & c f . \text { Tables VIII }(\beta) \\ & \text { and IX }(\alpha) \end{aligned}$
5 β P3 $\alpha 21(11,20$)	P6240	1178	3071	13/87	
5aP3 $321(11,20$)	P2230	1648	3217	13/87	
44P21(3,11,20)	Q3690	1647	3217	18/82	
5β P11 $\beta 21(3,20)$	P6270	1510	3179	15/85	
$5 \alpha \mathrm{P} 3 \beta 11 \beta 21(20)$	P5400	2059	3314	15/85	
$\Delta 4 \mathrm{P} 11821(3,20)$	Q1550	2250	3352	15/85	
				15/85	
5PP17 $\alpha^{2} 1(3,11,20)$	P7100		mposes	23/77	cf. Tables XI (β)
$5 \beta \mathrm{P} 3 \alpha 17 \alpha 21(11,20)$	P9550		mposes	23/77	and XII (α)
$5 \alpha \mathrm{P} 3 \beta 17 \alpha 21(11,20)$	P5200		mposes	18/82	
$\triangle 4 \mathrm{P} 17 \alpha 21(3,11,20)$	Q2500		mposes	19/82	
5 β P3 $\alpha 11 \beta 17 \alpha 21(20)$	$\mathbf{P 9 0 5 0}$		mposes	17/83	
$\triangle 5 \mathrm{P} 3 \beta 11 \beta 17 \alpha 21$ (20)	Q5750		mposes	17/83	
$\triangle 4 \mathrm{P} 11 \beta 17 \alpha 21(3,20)$	Q3880		mposes	20/80	
				20/80	

[^2]MOLE PER CENT COMPOSITION, C, AND TOTAL PER CENT RECOVERY, R, OF PRODUCTS FROM NaBiO ${ }_{3}$ OXIDATION OF STEROIDS SUBSTITUTED IN THE PREGNANE SIDE-CHAIN

Starting material*				Normal product**		
No.	Abbreviation	Source	GLC properties	C (in brackets) (mole \%)	$R(\%)$	
1	SpP3a17a20 ${ }^{\text {S }}$	P9480	cf. Table VII of rcf. 4	[0.8] unchanged, [12.7] $5 \beta \mathrm{P} 3 \alpha(20),[21.8] 5 \beta \mathrm{~A} 3 \alpha(17)$, and [64.6] $5 \beta \mathrm{P} 3 \alpha 20 \beta$	84	
2	5 β P $3 \alpha 17 \times 20 \alpha$	P9450	cf. Table VIII of ref. 4	[6] unchanged, [93] $5 \beta \mathrm{~A} 3 \alpha(17)$	80	
3	-SP3p17a20 α	SRC	cf. Table VIII of ref. 4	[25] unchanged, $[40] \Delta 5 \mathrm{~A} 3 \beta(17)$, [35] 5,6-epoxy-A3 $\beta(17)$	65	
4	$\triangle^{15 P} 3 \beta 17 \alpha 20 \beta$	Q5890	cf. Table Vll of ref. 4	[25.5] unchanged, [35.5] $\triangle 5 \mathrm{~A} 3 \beta(17),[38.5] 5,6$-ероху-A3 $3(17)$	70	
5	$\triangle 4 \mathrm{P} 17 \times 20 \alpha(3)$	Q1820	cf. Table VIII of ref. 4	[25] unchanged, [75] $14 \mathrm{~A}(3,17)$	72	
6	$\triangle 4 \mathrm{P} 17 \times 20 \mathrm{P}(3)$	Q1850	cf. Table VII of ref. 4	[19] unchanged, [81] $14 \mathrm{~A}(3,17)$	70	
7	5β P17 $1721(3,20)$	P6300	decomposes	[95] $5 \beta \mathrm{~A}(3,17)$	75	
8	SuP17a21(3,20)	P2320	decomposes	[97] $5 u A(3,17)$	66	
9	$44 \mathrm{P} 17 \times 21(3,20)$	Q1610	decomposes	[97] $\angle 4 A(3,17)$	61	
10	SaP17c20p21	SRC	cf. Table XII of ref. 4	[96] $5 \alpha \mathrm{~A}(17)$	65	
11	$\triangle 5 \mathrm{P} 3 \beta 17 a 20421$	SRC	cf. Table XIII of ref. 4	[75] $15 \mathrm{~A} 3 \beta(17)$, [25] 5,6-ероху-А3 β (17)	65	
12	A4P17a20p21(3)	Q4080	cf. Table XII of ref. 4	[97] $\triangle 4 \mathrm{~A}(3,17)$	49	
13	$5 a \mathrm{Pl} 7 \alpha(3,11,20)$	P4100	cf. Table I	[11] unchanged, [89] $5 \alpha \mathrm{~A}(3,17)$	63	
14	SPP17 $211(3,11,20)$	P7100	decomposes	[92] $5 \mathrm{\beta} \mathrm{~A}(3,11,17)$	56	
15		P9550	decomposes	[95] $5 \beta \mathrm{~A} 3 \times(11,17)$	59	
16	SaP3P17a21(11,20)	P5200	decomposes	[97] $5 \alpha A 3 \beta(11,17)$	61	
17	$\triangle 4 \mathrm{Pl} 7 \alpha 21(3,11,20)$	Q2500	decomposes	[97] $44 \mathrm{~A}(3,11,17)$	53	
18	S β P $3 \alpha 17 \alpha 20 \beta 21(11)$	P9200	cf. Table X	[96] 5 $\mathrm{AA} 3 \alpha(11,17)$	67	
19		P9050	decomposes	[97] 5 β A $3 \alpha 11 \beta(17)$	68	
20	$5 u \mathrm{P} 11 \beta 17 \alpha 21(3,20)$	P5250	decomposes	[98] $5 \alpha A 11 \beta(3,17)$	49	
21	A5P3 $\beta 11 \beta 17 \alpha 21$ (20)	Q5750	decomposes	[66] $\triangle 5 \mathrm{~A} 3 \beta 11 \beta(17)$, [27] 5,6-ероху-/15A3 $\beta 11 \beta(17)$	48	
22	14P11p17 $21(3,20)$	Q3880	decomposes	[97] $14 \mathrm{~A} \\| 1 \beta(3,17)$	60	
23	${ }_{5 \beta} \mathrm{P} 3 \beta 11 / \beta 17 \alpha 20 \beta 21$	P8620	cf. Table XI	[96.5] 5 $\beta \mathrm{A} 3 \beta 11 \beta(17),[4.5] 5 \beta \mathrm{P} 3 \beta(11,17)$	64	
24	5 $\beta \mathrm{P} 3<111 \beta 17 / 20 \beta 21$	P8590	cf. Table XI	[85] 5 $\beta \mathrm{A} 3 \alpha 11 \beta(17),[15] 5 \beta \mathrm{~A} 3 a(11,17)$	65	
25	$5 \alpha \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta 21$	P4350	cf. 1 able XI	[97] 5 $\alpha \mathrm{A} 3 \beta 11 \beta(17)$	70	
26		Q ${ }^{3} 790$	cf. Table XI	$[96] \triangle 4 A 11 \beta(3,17)$	52	
27	$\Delta 4 \mathrm{P} 11 \beta 17020 \alpha 21(3)$	Q3760	$c f$. Table XII	[98] $44 \mathrm{Al1} \beta(3,17)$	54	

[^3]While a complete RD revealed the presence of $17 a 21(20)$-steroids unaccountable by direct GLC (cf. above), (3) and (11) groups were also reduced in the process ${ }^{1-4}$. The products therefore gave a clue as to the presence of substitution at positions 3 and/or 11, but none as to the original nature of these substitutions. This and other structural problems were readily solved by NaBiO_{3} oxidation.
NaBiO_{3} oxidation. In 1953, Brooks and Norymberski ${ }^{5}$ showed that NaBiO_{3} oxidation of steroids substituted in the pregnane side-chain produced high yields of fragments characteristic of their structure and proposed the analysis of these products as a means of estimating these steroids. While the estimation of corticosteroids by quantification of the formaldehyde generated by this reaction has proved reliable ${ }^{6}$, later work by Breuer and Nocke ${ }^{7}$ has revealed complications precluding the use of the 17-ketosteroid products for the quantitative estimation of steroids substituted in the side-chain.

The present, systematic investigation of the reaction products has shown, however, that their analysis by GLC afforded a reliable tool for the identification of the original steroids. Indeed, with the sole exception of 20β-pregnanetriol (No. 1), all steroids listed in Table II yielded the readily identifiable parent 17-ketoandrostane as a major, if not the sole product of NaBiO_{3} oxidation which was demonstrable by

TABLE III
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P17a20ß(11)

Steroid					Source(s)
\boldsymbol{M}	Abbreviation	$t_{\text {ikr }}$	L_{R}	$G_{R}{ }^{*}$	
I		564	2751	638**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta \mathrm{P} 20 \beta(11)^{* * *}+ \\ & 1 G_{R^{s}} \end{aligned}$
II	$5 \alpha \mathrm{P} 17 \alpha 20 \beta(11)$	632	2801	651	$\underset{\Delta G^{\xi}}{\text { Calculated; } L_{R} 5 \alpha \operatorname{P20} \beta(11)^{* * *}+}$
III	5 $\mathrm{PP} 3 \beta 17 \alpha 20 \beta(11)^{\text {(}}$	1130	3053	651	Calculated; $L_{R} 5 \beta P 3 \beta 20 \beta(11)^{\cdots}+$ $\Delta G_{R}{ }^{5}$
IV	$5 \alpha \mathrm{P} 3 \alpha 17 \alpha 20 \beta(11)$	1132	3054	653	$\begin{gathered} \text { Calculated; } L_{R} 5 \alpha \mathrm{P} 3 \alpha 20 \beta(11)^{* \cdots}+ \\ \Delta G_{R^{s}} \end{gathered}$
V	5 3 P17 $208(3,11)$	1099	3041	638**	Calculated; $L_{R} \operatorname{5\beta P20\beta }(3,11)^{\cdots}+$ $A G_{R}{ }^{\text {B }}$
VI	5 β P3 $\alpha 17 \alpha 20 \beta(11)$	1114	3047	626**	$\begin{aligned} & \text { Prepared; } 30 \min \text { RD } \\ & 5 \beta \mathrm{P} 3 \alpha 17 \alpha(11,20) \end{aligned}$
VII	SaP17a208(3,11)	1250	3097	644**	Calculated; $L_{R} 5 \alpha \mathrm{P} 20 \beta(3,11)^{* * *}+$ ΔG^{8}
VIII	$\triangle 4 \mathrm{P} 3 \beta 17 \alpha 20 \beta(11)$	1321	3121	638**	Calculated; $L_{R} \Delta 4 \mathrm{P} 3 \beta 20 \beta(11)^{\cdots}+$ $\Delta G_{R^{8}}$
IX	-4P3p17a20 ${ }^{(11)}$	1396	3145	648	$\begin{aligned} & \text { Prepared; } 30 \min R D \\ & \Delta S P 3 \beta 17 \alpha(11,20) \end{aligned}$
X	$5 \alpha \mathrm{P} 3 \beta 17 \alpha 20 \beta(11)$	1459	3164	658	$\begin{aligned} & \text { Prepared; } 30 \text { min RD } \\ & 5 a \mathrm{P} 17 a(3,11,20) \end{aligned}$
XI	44P17a20 $(3,11)$	1422	3153	622**	$\begin{aligned} & \text { Calculated; } L_{R} \Delta 4 \mathrm{P} 20 \beta(3,11)^{* *}+ \\ & \Delta G_{R^{4}} \end{aligned}$

[^4]TABLE IV
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P17 $\alpha_{2} 0 \alpha(11)$

Steroid					Source(s)
M	Abbreviation	$t_{N R}^{\prime}$	\boldsymbol{L}_{R}	$\boldsymbol{G}_{\boldsymbol{R}}{ }^{*}$	
I	$5 \beta P 17 \alpha 20 \alpha(11)$	624	2795	682**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta P 20 \alpha(11)^{* * *}+ \\ & \Delta G_{R}{ }^{s} \end{aligned}$
II	$5 a \mathrm{P} 17 \alpha 20 \alpha(11)$	685	2836	686	Calculated; $L_{R} 5 \alpha \mathrm{P} 20 \alpha(11)^{* * *}+$ $\Delta G_{R}{ }^{\text { }}$
III	$5 \beta \mathrm{P} 3 \beta 17 \alpha 20 \alpha(11)$	1245	3095	693	Calculated; $L_{R} 5 \beta$ P3 $\beta 20 \alpha(11)^{* * *}+$ $\Delta G_{R}{ }^{\text {n}}$
IV	$5 \alpha \mathrm{P} 3 \alpha 17 \alpha 20 \alpha(11)$	1236	3092	691	Calculated; $L_{R} 5 \alpha \mathrm{P} 3 \alpha_{20} 0 \alpha(11)^{* * *}+$ $\Delta G_{R}{ }^{5}$
V	$5 \beta P 17 \alpha 20 \alpha(3,11)$	1213	3084	672**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta P 20 \alpha(3,11)^{* * *}+ \\ & \Delta G_{R^{\Sigma}} \end{aligned}$
VI	$5 \beta \mathrm{P} 3 \alpha 17 \alpha 20 \alpha(11)$	1239	3093	672**	Prepared; 30 min RD $5 \beta P 3 \alpha 17 \alpha(11,20)$
VII	$5 \alpha P 17 \alpha 20 \alpha(3,11)$	1358	3133	$680^{* *}$	Calculated; $L_{R} \operatorname{SaP20\alpha (3,11)^{***}+}$ $\Delta G_{R}{ }^{5}$
VIII	44P3 $\beta 17 \alpha 20 \alpha(11)$	1426	3154	669**	$\begin{aligned} & \text { Calculated; } L_{R}-44 \mathrm{P} 3 \beta 20 \alpha(11)^{* * *}+ \\ & \int G_{R}^{5} \end{aligned}$
IX	$45 \mathrm{P} 3 \beta 17 \alpha 20 \alpha(11)$	1518	3181	684	Prepared; $\mathbf{3 0} \mathbf{~ m i n ~ R D ~}$ $45 \mathrm{P} 3 \beta 17 \alpha(11,20)$
X	$5 \alpha \mathrm{P} 3 \beta 17 \alpha 20 \alpha(11)$	1566	3195	689	Prepared; $\mathbf{3 0} \mathrm{min}$ RD $5 \alpha \operatorname{P17\alpha }(3,11,20)$
XI	$\triangle 4 \mathrm{Pl} 17 \alpha 20 \alpha(3,11)$	1542	3188	$657 * *$	Calculated; $L_{R} \mathbf{1 4 P 2 0 \alpha (3 , 1 1) ^ { * * * } +}$ $A G_{K}{ }^{8}$

[^5]GLC. The important point is, of course, that this product possesses all structural features not included in the side-chain of the original steroid. Together with the TLC and GLC data on the original steroid, this information constitutes a basis for unequivocal identification.

The case of 20β-pregnanetriol which yields the parent 20β-diol as major product is remarkable. No other triol, nor any of the corresponding (11)- or 11β-substituted steroids, including the 5β P3 $\alpha 20 \beta$ compounds No. 18 and No. 24 showed similar behaviour.

The $\Delta 53 \beta$-steroids, in addition to the normal 17-keto products, yielded important amounts of the corresponding 5,6-epoxy derivatives (cf. compounds Nos. 3, 4, 11, and 21 in Table II) which gave additional evidence for the $45 P 3 \beta$ structure. Remarkably, the L_{R} values of the 17-keto and 5,6-epoxy-17-keto products always differed by $140 \pm 1 L_{R}$ units. Identical 5,6-epoxides were obtained by NaBiO_{3} oxidation of the $\Delta 53 \beta(17)$-steroids listed in Tables XIII-XV. For example, 90% of $\Delta 5 A 3 \beta$ (17) was converted under standard conditions to the 5,6-epoxy derivative in 4 h .

While the 21(20)-, 20ק21-, and 20a21-steroids yielded normal GLC peaks (cf. Table I of Part IV^{4} and the present article), their NaBiO_{3} oxidation products, as indeed their CrO_{3} oxidation products ${ }^{4}$ gave no GLC peaks. Presumably the 20-

TABLE V
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11 $17 \alpha_{2} 2 \beta$

Steroid					Source(s)
M	Abbreviation	$t_{\text {NR }}^{\prime}$	L_{R}	$G_{R}{ }^{*}$	
I	$5 \beta \mathrm{PL11} 17 \alpha 20 \beta$	650	2813	700^{*-}	Calculated; $L_{R} \operatorname{S\beta P11\beta 20} \beta^{* * *}+$ $\Delta G_{R}{ }^{5}$
II	$5 \alpha \mathrm{P} 11 \beta 17 \alpha 20 \beta$	736	2867	717	$\begin{aligned} & \text { Calculated; } L_{R} 5 a P 11 \beta 20 \beta^{* * *}+ \\ & \Delta G_{R^{\xi}} \end{aligned}$
III	$5 \beta \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta$	1285	3109	707**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta \mathrm{P} 3 \beta 11 \beta 20 \beta^{* * *}+ \\ & \Delta G_{R^{s}} \end{aligned}$
IV	$5 \alpha \mathrm{P} 3 \alpha 11 \beta 17 \alpha 0 \beta$	1288	3110	709**	Calculated; $L_{R} 5 \alpha P 3 \alpha 11 \beta 20 \beta^{* * *}+$ $\Delta G_{R}{ }^{\text {s }}$
V	$5 \beta \mathrm{P} 11 \beta 17 \alpha 20 \beta(3)$	1312	3118	706**	Calculated; $L_{R} 5 \beta P 11 \beta 20 \beta(3)^{* * *}+$ $\Delta G_{R}{ }^{5}$
VI	$5 \beta \mathrm{P} 3 \alpha 11 \beta 17 \alpha 20 \beta$	1247	3096	675**	P8750; prepared 2 h RD P6200; cf. Table I
VII	S α P11 $\beta 17 \alpha 20 \beta(3)$	1507	3178	725	Calculated; $L_{R} 5 \alpha \operatorname{P11} \beta 20 \beta(3)^{* * *}+$ $\Delta G_{R}{ }^{6}$
VIII	$\Delta 4 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta$	1560	3193	710**	cf. Table I
IX	$\triangle 5 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta$	1656	3219	722	Prepared; 2 h RD $45 P 3 \beta 17 \alpha(11,20)$; cf. Table I
X	5 α P3 $1: \beta 17 \alpha 20 \beta$	1702	3231	725	Prepared; 2 h RD $5 \alpha \operatorname{P17\alpha (3,11,20);~}$ cf. Table I
XI	$44 \mathrm{PI} 1 \beta 17 \alpha 20 \beta(3)$	1786	3252	721	$\begin{aligned} & \text { Calculated; } L_{R} \triangle 4 \text { P1 } 1 \beta 20 \beta(3)^{* * *}+ \\ & \Delta G_{R}{ }^{5} \end{aligned}$

[^6]carboxylic acid arising from $21(20)$-steroids ${ }^{5}$ is not extracted from the neutralized reaction mixture and the 17 -aldehydic products from 200321- and 20a21-steroids ${ }^{5}$ would be thermally unstable.

The $21(20)-; 20 \alpha 21-$, and $20 \beta 21$-steroids, therefore, are characterized by the disappearance of their GLC peak after NaBiO_{3} treatment and the absence of any product demonstrable by GLC. This property confirms a tentative identity based on TLC and GLC data of the original steroid and its RD products.

The characteristic property of $17 \alpha(20)$-steroids is that they are unaffected by NaBiO_{3} (ref. 5).

Because of appreciable differences in reactivity towards NaBiO_{3}, the standard conditions described above were selected as a satisfactory compromise ensuring good, roughly uniform yields in all cases.

Yields increased for the least reactive, but decreased for the most reactive steroids when the reaction time was extended from 30 min to 45 min , all other conditions remaining as previously described. Beyond 1 h , a general deterioration of recoveries was observed. A time-dependent decrease in recovery was also demonstrable when the oxidation procedure was applied dircetly to the 17 -keto oxidation products listed in Tables XIII-XV. However, because the recoveries of these compounds still

TABLE VI
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11 $\beta 17 \alpha 20 \alpha$

Steroid					Source(s)
M	Abbreviation	$t_{N R}^{\prime}$	$G_{R}{ }^{*}$		
I	SPP11 β_{17}	718	2856	$743 * *$	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta \mathrm{P} 11 \beta 20 \alpha^{* * *}+ \\ & \Delta G_{R}{ }^{5} \end{aligned}$
II	$5 \alpha \mathrm{P} 11 \beta 17 \alpha{ }^{2} \boldsymbol{\alpha}$	800	2903	753	
III	$5 \beta \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \alpha$	1413	3150	732**	Calculated; $L_{R} 5 \beta P 3 \beta 11 \beta 20 \alpha^{* * *}+$ $\Delta G_{R}{ }^{5}$
IV	$5 \mu \mathrm{P} 3 \alpha 11 \beta 17 \alpha 20 \alpha$	1409	3149	748**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \alpha \mathrm{P} 3 \alpha 11 \beta 20 \alpha^{* * *}+ \\ & \Delta G_{R^{s}} \end{aligned}$
V		1452	3162	750**	
VI	$5 \beta \mathrm{P} 3 \alpha 11 \beta 17 \alpha 20 \alpha$	1416	3151	730**	SRC; prepared 2 h RD P6200; cf. Table I
VII	$5 \alpha \mathrm{P} 11 \beta 17 \alpha 20 \alpha(3)$	1641	3215	762	
VIII	-4P3F11 $\beta 17 \alpha 20 \alpha$	1683	3226	$743 * *$	Prepared; 2 h RD 44 P17 $\alpha 0 \beta(3,11)$; cf. Table I
IX	- 5 P3 $\beta 11 \beta 17 \alpha 20 \alpha$	1782	3251	754	Prepared; 2 h RD 45 P3 $\beta 17 \alpha(11,20)$; cf. Table I
X	5 α P3 $\beta 11 \beta 17 \alpha 20 \alpha$	1841	3265	759	Prepared; 2 h RD $5 \alpha \operatorname{P17\alpha }(3,11,20)$; cf. Table I
XI	$\triangle 4 \mathrm{P} 11 \beta 17 \alpha 20 \alpha(3)$	1941	3288	757	Calculated; $L_{R} 44 \mathrm{P} 11 \beta 20 \alpha(3)^{* * *}+$ $A G_{R}{ }^{3}$

[^7]exceeded 90% after 30 min , and because at least 3 h of exposure to the reagents was necessary to bring these recoveries down to the levels R listed in Table II, losses indicated by R could not possibly arise exclusively from the degradation and extractive losses of the 17 -keto products. Rather, they resulted mainly from a reaction involving a more reactive precursor of these compounds, possibly through fusion at the level of $\mathbf{C - 1 7}$ of two precursor molecules. The extreme broadness and late emergence of the GLC peak would make a dimer-size compound undetectable in small amounts. The apparent degradation of the 17 -keto compound probably occurs via the formation of this labile precursor from the 17 -keto compound itself. The existence of an equilibrium between precursor and 17-keto compound largely favouring the latter would explain the comparatively slow decrease in recovery observed with the 17 -keto compound as such.

All other conditions being as described above, yields increased markedly when the amount of NaBiO_{3} was increased up to 10 mg , then slowly up to 15 mg . No further beneficial effect was observed up to 25 mg , possibly because larger quantities of NaBiO_{3} made stirring and extraction of the reaction mixture less effective. Likewise stirring increased the reaction rate up to $250-300 \mathrm{rpm}$ only.

The effect of varying the acetic acid concentration from 25 to 80% was not very

TABLE VII
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P20p21(11)

Steroid					Source(s)
M	Abbreviation	$t_{\text {NR }}^{\prime}$	L_{R}	$\boldsymbol{G}_{\text {R }}{ }^{*}$	
I	58P20 211 (11)	867	2938	825**	$\begin{aligned} & \text { Calculated; } L_{R} S \beta P 20 \beta(11)^{* *}+ \\ & \Delta G_{R}{ }^{8} \end{aligned}$
II	$5 \alpha \mathrm{P} 20821(11)$	973	2988	838	```Calculated; 的 5aP20\beta(11)*** + \DeltaG}\mp@subsup{G}{R}{}\mp@subsup{}{}{8```
III	5p83p20821(11)	1738	3240	838	Calculated; $L_{R}{ }^{\Delta G^{5}}{ }^{5} \beta \mathrm{P} 3 \beta 20 \beta(11)^{* * *}+$
IV	5aP3a20821(11)	1738	3240	839	$\begin{aligned} & \text { Prepared; } 30 \mathrm{~min} \text { RD } \\ & \text { 5aP3a21(11,20) } \end{aligned}$
V	5 $8 \mathrm{P} 20 \beta 21(3,11)$	1690	3228	816**	Calculated; $L_{R} \operatorname{SBP2O}(3,11)^{\cdots}+$
VI	58P3a20阝21(11)	1629	3212	791**	Prepared; 30 min RD 5BP3a21(11,20)
VII	S $\underset{\sim}{\mathbf{P} 20 \beta 21(3,11)}$	1923	3284	831**	```Calculated; L}\mp@subsup{L}{\mathbf{R}}{}\operatorname{S\alphaP20\beta(3,11)*** + \DeltaGG}\mp@subsup{}{R}{```
VIII	44P3p20ß21(11)	2032	3308	825**	
IX	4SP3B20821(11)	2163	3335	838	Calculated; $L_{R} \operatorname{disP}^{2} \beta 20 \beta(11)^{* * *}+$ $\Delta G_{R}{ }^{\text { }}$
X	SaP3 $\beta 20 \beta 21$ (11)	2228	3348	842	Prepared; $\mathbf{3 0} \mathbf{m i n}$ RD $5 \alpha \mathrm{P} 3 \beta 21(11,20)$
XI	44P20821 $(3,11)$	2188	3340	809**	$\begin{aligned} & \text { Calculated; } L_{R} \Delta 4 \mathrm{P} 20 \beta(3,11)^{\cdots *}+ \\ & \Delta G_{R}^{8} \end{aligned}$

[^8]marked, the optimal plateau stretching from 45 to 65%. In all cases, the voiume of $25 \%(w / v) \mathrm{NaOH}$ added to the reaction mixture provided 75% neutralization ${ }^{5}$. The density of the neutralized reaction mixture being much higher than that of the solvent, a clean centrifugal separation was obtained, but vigorous stirring and several extractions were needed for highest recovery. The volume of benzene used had to be kept at or below $600 \mu \mathrm{l}$, and the total volume below the $1-\mathrm{ml}$ mark to prevent losses due to splashing while stirring with the vortex mixer.

No beneficial effect accrued from working under nitrogen or in complete darkness. ${ }^{5}$

The recoveries listed in Table II were obtained with $10-\mu$ g samples of steroid. A slew decrease down to about half of these values was observed as the amount of steroid was lowered to 50 ng . The NaBiO_{3} test was still sensitive, however, because the products gave narrow peaks in the early section of the GLC chromatogram. For example, 1 ng of androsterone gave a $50-\mathrm{mm}$ peak at full sensitivity. The sensitivity of the test was lowest with $\Delta 4 \mathrm{~A}(3,17), \Delta 4 \mathrm{~A}(3,11,17)$, and $\Delta 4 \mathrm{~A} 11 \beta(3,17)$ because corresponding peaks had a tendency to flatten and shift upscale at low level ${ }^{1,8}$. Improved sensitivity was obtained in this case by analyzing the $\Delta 4 A 3 \beta 17 \beta$ compounds obtained by RD of the products or the $44 A 3 \beta(17)$ products of the RD-subjected steroids.

TABLE VIII
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11 $1820 \beta 21$

${ }^{*}$ Average G_{R}-normal value $=G_{R} P 11 \beta 20 \beta 21=881$.
${ }^{* *} G_{R}$-odd steroid.
*** For L_{R} value, see Table XI of ref. 2.
${ }^{5} \Delta G_{R}=328$; cf. Table XVI.

G_{R} and ΔG_{R} data

The G_{R} data in Tables III, IV, VII, and X show that the pattern of G_{R}-odd steroids in groups featuring (11) is characteristic and different from the characteristic pattern in groups featuring 11β ($c f$. Tables V, VI, VIII, IX and XII). A comparison with data previously discussed ${ }^{1,2}$ shows that, indeed, the patterns corresponding to (11) and 11β are unique.

Table XVI shows ΔG_{R} values calculated by eqn. 3 for groups listed in column 1 and the groups indicated in rows - from G_{R} values shown between parentheses under group designations. The ΔG_{R} values listed in the column are the differences between G_{R} values of group pairs to which 226 was added with groups of the androstane series (cf. eqn. 17 of ref. 1).

The mean differences, ΔG_{R} of L_{R} values for M-corresponding 20α and 20β isomers, including those previously observed ${ }^{2-4}$, are presented in Table XVII for comparison. Obviously, ΔG_{R} varies from group to group. While the introduction of (11) or 11β exerts an unpredictable influence, it does not affect the reversal in order of

TABLE IX
VALUES OF L_{R} AND G_{R}, AND SOURCE OF STEROIDS OF GROUP P11 $120 \propto 21$

Steroid					Source(s)
M	Abbreviation	$t_{N R}^{\prime}$	L_{R}	$\boldsymbol{G}^{\text {R }}$	
I		912	2960	847 $=$	$\text { Calculated; } L_{R} 5 \beta \mathrm{P} 11 \beta 20 \alpha^{* *}+$ $A G_{R}{ }^{8}$
$\mathrm{II}^{\text {- }}$	$5 \alpha \mathrm{P} 11 \beta 20 \alpha 21$	1016	3007	857	Calculated; $L_{R} 5 \alpha P 11 \beta 20 \alpha^{* * *}+$ $\Delta G_{R}{ }^{5}$
III	5β P3p11 $\beta 20 \alpha 21$	1799	3255	853**	Calculated; $L_{R} 5 \beta \mathrm{P} 3 \beta 11 \beta 20 \alpha^{* * *}+$ $\Delta G_{R}{ }^{5}$
IV	$5 \alpha \mathrm{P} 3 \alpha 11 \beta 20 \alpha 21$	1795	3254	$853^{* *}$	Prepared; 2 h RD SaP3 α 21(11,20); cf. Table I
V	$5 \beta \mathrm{P} 11 \beta 20 \alpha 21(3)$	1845	3266	854**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta \mathrm{P} 11 \beta 20 \alpha(3)^{* *}+ \\ & \Delta G_{R^{3}} \end{aligned}$
VI	SpP3 $111 \beta 20 \alpha 21$	1656	3219	798**	Prepared; 2 h RD 5β P3 $\alpha 21(11,20)$; cf. Table I
VII	5aP11 $\beta 20 \alpha 21$ (3)	2084	3319	866	$\begin{aligned} & \text { Calculated; } L_{R} 5 \alpha \mathrm{P} 11 \beta 20 \alpha(3)^{* *}+ \\ & \Delta G_{R}{ }^{\varepsilon} \end{aligned}$
VIIİ	44P3F11 $\beta 20 \propto 21$	2133	3329	846**	```Prepared;2hRD 14P2l(3,11,20)**; cf. Table I```
IX	45P3p11 $\beta 20 \alpha 21$	2270	3356	859	Calculated; L_{R} S5P3 $\beta 11 \beta 20 \alpha^{* * *}+$ $A G_{R}{ }^{5}$
X	$5 \alpha \mathrm{P} 3 \beta 11 \beta 20 \alpha 21$	2355	3372	866	$\begin{array}{rl} \text { Prepared; } 30 \text { min } & \text { RD } \\ & \text { } 5 a \mathrm{P} 3 \beta 21(11,20) ; \\ & \text { cf. Table I } \\ 2 \mathrm{~h} & \mathrm{RD} \\ & \text { } 5 \alpha \mathrm{P} 3 \beta 11 \beta 21(20) ; \\ & c f . \text { Table I } \end{array}$
XI	$\Delta 4 \mathrm{P} 11 \beta 20 \alpha 21(3)$	2472	3393	862	Calculated; $L_{R} \Delta 4 \mathrm{P} 11 \beta 20 \alpha(3)^{* * *}+$ $\Delta G_{R}{ }^{4}$

[^9]appearance of peaks indicated by a negative ΔG_{R} value for groups which feature 21-OH.

Using eqn. 4, the L_{R} values of steroids listed in column 1 of Table XVIII were calculated, and the errors between calculated and observed values were entered in columns below the designations of the relevant groups. Because only errors obtained from experimental L_{R} values are significant in this test, steroids for which a complete set of significant values was unavailable were not included in column 1. Steroids of particular M-configurations, therefore, are not represented by these data. It should be noted, however, that observed L_{R} data on steroids featuring these M-configurations and belonging to all groups designated in columns 2-7 of Table XVIII were used in refs. 1 and 2 to demonstrate the validity of eqn. 4 by the same test.

It is evident that very small errors, never exceeding $\pm 3 L_{R}$ units, resulted from the use of eqn. 4 for L_{R} values calculations, except in the case of $5 \beta P 3 \alpha$-steroids, for which the errors were large ${ }^{1,2}$. However, errors observed with the $5 \beta 3 \alpha$-steroids corresponding to columns $2-5$ were so uniform (± 2) that the following corrections could

TABLE X
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P17 $\alpha 20 \beta 21(11)$

Steroid					Source(s)
M	Abbreviation	$t_{\text {VR }}^{\prime}$	$L_{\text {R }}$	$\boldsymbol{G}_{\text {R }}{ }^{*}$	
I		1167	3067	956**	Calculated; $L_{R} 5 \beta \mathrm{P} 20 \beta(11)^{* * *}+$ $\Delta G_{R^{3}}$
II	$5 \alpha \mathrm{P} 17 \times 20 \beta 21(11)$	1309	3117	967	$\begin{aligned} & \text { Calculated; } L_{R} 5 \alpha \mathrm{P} 20 \beta(11)^{\cdots}+ \\ & \Delta G_{R}{ }^{8} \end{aligned}$
III	$5 \beta \mathrm{P} 3 \beta 17 \alpha 20 \beta 21(11)$	2339	3370	969	
IV	$5 \alpha \mathrm{P} 3 \alpha 17 \alpha 20 \beta 21(11)$	2344	3370	969	Calculated; $L_{R} 5 \alpha \mathrm{P} 3 \alpha 20 \beta(11)^{* * *}+$ ΔG^{k}
V	5pP17a20p21 $(3,11)$	2275	3357	945**	Calculated; $L_{R} \operatorname{SPP} \operatorname{PO} \beta(3,11)^{\cdots}+$ $\Delta G_{\mathrm{R}}{ }^{\text { }}$
VI	$5 \beta \mathrm{P} 3 \sim 17 \alpha 20 \beta 21(11)$	2218	3346	925**	P9200; prepared 30 min RD P7100 and P9550
VII	$5 \alpha \mathrm{P} 17 \alpha 20 \beta 21(3,11)$	2588	3413	960**	Calculated; $L_{R} 5 \alpha \mathrm{P} 20 \beta(3,11)^{* * *}+$ $\Delta G_{R}{ }^{s}$
VIII	-4P3F17a20阝21(11)	2733	3436	953**	$\begin{aligned} & \text { Prepared; } 30 \mathrm{~min} \mathrm{RD} \\ & 44 \mathrm{P} 17 \alpha 21(3,11,20) \end{aligned}$
IX	A5P3 $\beta 17 \alpha 20 \beta 21(11)$	2911	3464	967	$\begin{aligned} & \text { Calculated; } L_{R} \Delta S P 3 \beta 20 \beta(11)^{* *}+ \\ & \Delta G_{R^{g}} \end{aligned}$
X	5 α P3/17 $\alpha 20 \beta 21(11)$	3010	3478	972	$\begin{aligned} & \text { Prepared; } 30 \min \mathrm{RD} \\ & 5 \alpha \mathrm{P} 3 \beta 17 \alpha 21(11,20) \end{aligned}$
XI	44P17a20321(3,11)	2944	3469	938**	```Calculated; L_ \DeltaGR}\mp@subsup{}{R}{5```

* Average G_{R}-normal value $=G_{R} P 17 \alpha 20 \beta 21(11)=969$.
${ }^{* *} G_{R}$-odd steroid.
** For L_{R} value, see Table IX of ref. 2.
\$ $4 G_{R}=457$; cf. Table XVI.
be used successfully: $-28 L_{R}$ units for (11)-featuring steroids, $-27 L_{R}$ units for $11 \beta 20 \beta$-steroids, and -19 with $11 \beta 20 \alpha$-steroids. Thus, at least for these $5 \beta 3 \alpha-$ steroids, the extent of excess oddity ${ }^{1,2}$ also is predictable. Obviously, this is not so for the other $5 \beta 3 \alpha$-steroids. However, samples of $5 \beta 3 \alpha$-steroids are among the most easily obtainable, either as such or by RD of appropriate keto-steroids.

As the above results show, the L_{R} values of heavily substituted steroids can be accurately calculated from the L_{R} value of any less substituted, M-corresponding steroid of a related group, and vice versa. These results therefore confirm the principle of constancy of oddity previously enunciated ${ }^{2}$, and the reliability, and versatility of a method of L_{R} value calculation based on eqn. 4. Conversely, this method allows a preliminary determination of structure to be made from retention time data.

Ambiguities that may arise in cases when two or more steroids of different structure have the same, or nearly the same retention time are often dispelled by the TLC data. In our systematic analysis of steroids, TLC is used as a preliminary separation step to obtain several fractions within precisely determined boundaries ${ }^{1}$. Hence, aside from making a subsequent GLC separation of the fraction components possible, this procedure also supplies TLC data on these components which may be decisive in the identification process. The corticosteroids, for example, are found in neatly

TABLE XI
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11 $17 \alpha 20 \beta 21$

Steroid					Source(s)
M	Abbreviation	$i_{\text {NR }}^{\prime}$	$L_{\text {R }}$	$\boldsymbol{G}_{\mathbf{R}}{ }^{*}$	
I		1327	3123	1010**	$\begin{aligned} & \text { Calculated; } L_{R} 5 \beta P 11 \beta 20 \beta^{* * *}+ \\ & \Delta G_{R}{ }^{g} \end{aligned}$
II	$5 \alpha \mathrm{P} 11 \beta 17 c 20 \beta 21$	1503	3177	1027	Calculated; $L_{R} 5 \alpha \operatorname{P11} \beta 20 \beta^{* * *}+$
III		2600	3415	1013**	P8620
IV	5 α P $3 \alpha 11 \beta 17 \alpha 20 \beta 21$	2630	3420	1021**	Calculated; $L_{R} 5 \alpha$ P3 α 11 $\beta 20 \beta^{* * * ~}+$ $\Delta G_{R}{ }^{\text { }}$
V	SpP11/17a20ß21(3)	2679	3428	1016**	Calculated; $L_{R} 5 \beta \mathrm{P} 11 \beta 20 \beta(3)^{* * *}+$ $\Delta G_{R}{ }^{8}$
VI.	5 β P3 $\alpha 11 \beta 17 \alpha 20 \beta 21$	2524	3402	981**	P8590; prepared 2 h RD P9550 and P7100; cf. Table I
VII	5aP11 $171 \% 20 \beta 21$ (3)	3076	3488	- 1035	Calculated; $L_{R} 5 \alpha \mathrm{P} 11 \beta 20 \beta(3)^{* *}+$ $\Delta G_{\mathrm{R}}{ }^{8}$
VIII	$\triangle 4 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta 21$	3182	3503	1020**	Prepared; 2 h RD Q2500; cf. Table I
IX	$\Delta 5 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta 21$	3360	3526	1029	Prepared; 2 h RD Q5790; of. Table I
X		3472	3540	1034	Q4350; prepared 2 h RD P5200; cf. Table 1
XI	44P11 $\beta 17 \alpha 20 \beta 21$ (3)	3667	3564	1033	Q3790

"Average G_{R}-normal value $=G_{R}$ P11 $\beta 17 \alpha 20 \beta 21=1032$.
** G_{R}-odd steroid.
*** For L_{R} value, see Table XI of ref. 2.
${ }^{5} \Delta G_{R}=478 ; c f$. Table XVI.
TABLE XII
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP P11 $\beta 17 \alpha 20 \alpha 21$

Steroid					Source(s)
\boldsymbol{M}	Abbreviation	$t_{\text {NR }}^{\prime}$	$L_{\text {R }}$	$G_{R}{ }^{*}$	
I	5 β P11 $\beta 17 \alpha 20 \alpha 21$	1279	3107	994**	Calculated; $L_{R} 5 \beta \mathrm{P} 11 \beta 20 \alpha^{* * *}+$ $\Delta G_{R^{3}}{ }^{3}$
II	5 α P11 $\beta_{17 \alpha}$ 20a21	1426	3154	1004	$\begin{aligned} & \text { Calculated; } L_{R} 5 \alpha \mathrm{P} 11 \beta 20 \alpha^{*=*}+ \\ & \Delta G_{R}{ }^{3} \end{aligned}$
III	$5 \beta P 3 \beta 11 \beta 17 \alpha 20 \alpha 21$	2523	3402	1000**	Calculated; $L_{R} 5 \beta P 3 \beta 11 \beta 20 \alpha^{* * *}+$
IV	$5 \alpha \mathrm{P} 3 \alpha 11 \beta 17 \alpha 20 \alpha 21$	2518	3401	1002**	Calculated; $L_{R} 5 \alpha \mathrm{P} 3 \alpha 11 \beta 20 \alpha^{* * *}+$
V	5PP11817a20 $211(3)$	2588	3413	1000**	
VI	- $5 \beta \mathrm{P} 3 \sim 11 \beta 17 \alpha 20 \alpha 21$	2433	3386	965**	SRC; prepared 2 h RD P9550 and P7100; cf. Table I
VII	SaP11817c20ce21(3)	2924	3466	1013	$\begin{aligned} & \text { Calculated; } L_{R} 5 \alpha \mathrm{P} 11 \beta 20 \alpha(3)^{* * *}+ \\ & \Delta G_{R}{ }^{4} \end{aligned}$
VIII	44P3F11p17~20a21	3000	3477	994**	Prepared; 2 h RD Q2500; cf. Table I
IX		3180	3502	1005	Prepared; 2 h RD Q5790; cf. Table I
\mathbf{X}	5aP3p11 $\beta 17 \alpha 20 \alpha 21$	3295	3518	1012	Prepared; 2 h RD P5200; cf. Table I
XI	$\Delta 4 \mathrm{P} 11 \beta 17 \alpha 20 \propto 21(3)$	3467	3540	1009	Q3760

[^10]TABLE XIII
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP A(I7)*

Steroid					Source(s)
\boldsymbol{M}	Abbreviation	$r_{\text {NR }}^{\prime}$	$L_{\text {R }}$	$G_{\text {R }}{ }^{*}$	
I	5阝A(17)	140.5	2148	261	Prepared; cf. ref. 1
II	SaA(17)	154	2187	263	SRC
III	-58A3p(17)	276	2441	266	A3670
IV	$5 ¢ A 3 \alpha(17)$	275	2439	264	A2420
V	$5 \beta \mathrm{~A}(3,17)$	279	2445	261	A3270
V1	5 β A3 α (17)	288.5	2460	267	A3610
VII	SaA $(3,17)$	309	2489	261	A1630
VIII	44A3 β (17)	331	2520	263	Calculated; $M_{R} 44 \mathrm{~A} 3 \beta+\mathrm{G}_{\mathrm{R}}(17)^{* *}$
IX	- 5 A3F (17)	337	2528	259	A8500
\mathbf{X}	$5 \alpha A 3 \beta(17)$	348	2542	263	A2490
XI	44A(3,17)	368	2566	261	A8090

* Cf. Table IX of ref. 1.
\because Average G_{R}-normal value $=G_{R} A(17)=263$.
TABLE XIV
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP $A_{\text {(}}(11,17)^{*}$

Steroid					Source(s)
\boldsymbol{M}	Abbreviation	$t_{\text {'ink }}^{\prime}$	L_{R}	$G_{R}{ }^{* *}$	
I	5 β A(11,17)	177	2248	361	Prepared*
II	$5 \alpha \mathrm{~A}(11,17)$	194	2287	363	Prepared*
III	$5 \beta \mathrm{~A} \beta \beta(11,17)$	343	2535	361	$\begin{aligned} & \text { Calculated; } M_{R} 5 \beta \mathrm{~A} 3 \beta^{*}+ \\ & G_{R}(11,17)^{* *} \end{aligned}$
IV	$5 \alpha A 3 \alpha(11,17)$	342	2534	359	A2280
V	$5 \beta \mathrm{~A}(3,11,17)$	336	2526	342***	A4010
VI	$5 \beta \mathrm{~A} 3 \alpha(11,17)$	348	2541	348***	A346C
VII	5aA(3,11,17)	379	2578	350***	Prepared*
VIII	$\triangle 4 \mathrm{~A} 3 \beta(11,17)$	398	2599	$342^{* * *}$	Calculated*
IX	A5A3B(11,17)	424	2627	358	SRC
X	$5 \alpha A 3 \beta(11,17)$	440	2643	364	Prepared*
XI	14A $(3,11,17)$	426	2629	324***	Calculated *

*Cf. Table V of ref. 1.
** Average G_{R}-normal value $=G_{R} A(11,17)=361$.
** G_{R}-odd steroid.
TABLE XV
VALUES OF L_{R} AND G_{R}, AND SOURCES OF STEROIDS OF GROUP A11 $\beta(17)^{*}$

Steroid					Source(s)
M	Abbreviation	$t_{\text {NK }}^{\prime}$	\boldsymbol{L}_{R}	$G_{R}{ }^{* *}$	
I	5BA11 ${ }^{\text {(17) }}$	224	2350	463***	Prepared*
II	$5 \alpha A 11 \beta(17)$	251	2399	475	Calculated*
III	$5 \beta \mathrm{~A} 3 \beta 11 \beta(17)$	440	2643	468***	Calculated*
IV	S α A3 $\alpha 11 \beta(17)$	431	2634	459***	Al330
V	5β A11 $18(3,17)$	441	2644	460***	Prepared*
VI	5β A3 $\alpha 11 \beta(17)$	442	2645	452***	A3120
VII	$5 \alpha A 118(3,17)$	503	2704	476	A2360
VIII	$\triangle 4 \mathrm{~A} 3 \beta 11 \beta(17)$	523	2720	463***	Calculated*
IX	$45 \mathrm{~A} 3 \beta 11 \beta(17)$	558	2746	477	Calculated*
X	SaA3B11 β (17)	571	- 2757	478	Al500
XI	$\triangle 4 \mathrm{Al1} \beta(3,17)$	601	2779	474	A6630

[^11]table XVI
ΔG_{R} values*

Group (a)	Group (b)**														
	$\begin{aligned} & A(11) \\ & (150) \end{aligned}$	$\begin{aligned} & A(11,17) \\ & (361) \end{aligned}$	$\begin{aligned} & A 17 \beta(11) \\ & (507) \end{aligned}$	$\begin{aligned} & P(11) \\ & (156) \end{aligned}$	$\begin{aligned} & P(11,20) \\ & (370) \end{aligned}$	$\begin{aligned} & \text { P20B(II) } \\ & (5 / 11) \end{aligned}$	$\begin{aligned} & P 20 \alpha(I I) \\ & (52.3) \end{aligned}$	$\begin{aligned} & \text { P17 } 1720 \beta(11) \\ & (688) \end{aligned}$	$\begin{aligned} & \text { P20821(11) } \\ & (839) \end{aligned}$						
P17a20 ${ }^{\text {(11) (654) }}$	730	519	374	498	283	141	166	654							
P17a20a(11) (688)															
P20阝21(11)(839)	917	706	561	685	469	328		315	130						
P17đ20821(11) (969)	1046	835	690	814	598	457									
	$\begin{aligned} & A 1 / \beta \\ & (222) \end{aligned}$	$\begin{aligned} & A 11 \beta(17) \\ & (477) \end{aligned}$	$\begin{aligned} & A_{(568)} 11 \beta 17 \beta \end{aligned}$	$\begin{aligned} & P 1 / \beta \\ & (222) \end{aligned}$	$\begin{aligned} & P 1 l \beta(20) \\ & (464) \end{aligned}$	$\begin{aligned} & \hline \text { PII } 1220 \beta \\ & (555) \end{aligned}$	$\begin{aligned} & \text { P11820a } \\ & \text { (599) } \end{aligned}$	$\begin{aligned} & P 1 / \beta 17 \alpha 20 \beta \\ & (723) \end{aligned}$	$\begin{aligned} & P 11 \beta 20 \beta 21 \\ & (881) \end{aligned}$	$\begin{aligned} & \text { PllB17 } 120 \alpha \\ & \text { (757) } \end{aligned}$	$\begin{aligned} & P 11 \beta 20 \alpha 21 \\ & (862) \end{aligned}$				
P11P17a20ß (723)	726	472	381	498	257	168	158								
P11 $117 \times 20 \alpha$ (757)															
P11 $220 \beta 21$ (881)	886	631	542	659	417	328									
P11P20a21 (862)							262								
P11 $117020 \beta 21$ (1032)	1037	783	690	809	568	478		308	150	252	147				
P11817a20 21 (1007)	1013	758	667	786	545	453	409								

P11 $\beta(20), \mathrm{P} 20 \beta(11), \mathrm{P} 20 a(11), \mathrm{P} 11 \beta 20 \beta$, and P11 20α, see Tables V-XII of ref. 2, respectively.

TABLE XVII
MEAN DIFFERENCES, ΔG_{R}, OF L_{R} VALUES FOR M-CORRESPONDING 20α - AND 20β STEROIDS

Group		$\Delta G_{R}{ }^{*}$	Source
P20 α	P20 β	+28	Table XVIII of ref. 2
P20 α (11)	P20 ${ }^{(11)}$	$\div 13$	
P11 $\beta^{20 \alpha}$	P11 $\beta 20 \beta$	+49	
P17a20a	P17c20 ${ }^{\text {a }}$	$+24$	Table XIV of ref. 4
P20c21	P20p21	-23	
P17020c21	P17a20821	-21	
$\mathrm{P} 17 \times 20 \alpha(11)$	P17~20p(11)	$+38$	Calculated from present data; see Tables III-VI,
P11 $\beta 17 \alpha 20 \alpha$	$\mathrm{P} 11 \beta 17 \times 20 \beta$	$+38$	VIII and IX, and XI and XII
P11 $120 \alpha 21$	P11 ${ }^{1} 20821$	-18	
P11\%17a20 21	P11817a20ß21	-20	

* ΔG_{R} is expressed in L_{R} units. For specific M-configurations, the deviation from the mean ΔG_{R} value, ε (cf. Table XVIII of ref. 2) should be added to G_{R}. The only exception to this rule is the large $\Delta G_{\mathrm{R}},+55$, for $5 \beta \mathrm{P} 3 \alpha 11 \beta 17 \alpha 20 \alpha$ and $5 \beta \mathrm{P} 3 \alpha 11 \beta 17 \alpha 20 \beta$ (cf. Tables XI and XII).
separated TLC fractions in order of decreasing polarity, as shown by the corresponding R_{b} values of $\Delta 4 \mathrm{P}$-corticosteroids in brackets:
$\triangle 4 \mathrm{P} 11 \beta 17 \alpha 21(3,20)$, cortisol [0.142]
$\triangle 4 \mathrm{P} 17 \alpha 21(3,11,20)$, cortisone [0.300]
$\Delta 4 \mathrm{PI} 1 \beta 21(3,20)$, corticosterone [0.388]
$\triangle 4 \mathrm{P} 17 \alpha 21(3,20)$, cortexolone [0.468]
$\Delta 4 \mathrm{P} 21(3,11,20)$, dehydrocorticosterone [0.660]
44P21 (3,20), cortexone [0.832]
Further decisive structural information is gained by the application of appropriate discriminatory tests based on the use of reactions described in the present series. Such tests are very sensitive, often requiring less material than is needed to produce high-resolution mass spectra for positive identification and, therefore, requiring less extensive and time-consuming preparative effort. While this advantage is appreciable when dealing with the very low steroid levels found in animal blood and tissues, the operating costs of the method are also much lower ${ }^{2}$. Last, but not least, the method does not require samples of standard steroid for comparison because both the preliminary and the final identification can be made directly from predictable TLC and GLC properties. Hence, with this method, the current unavailability of many steroid standards no longer constitutes a serious obstacle to the systematic analysis of these compounds.

The simplicity of the method contrasts with the complexity of the present, extensive investigation on which it is based. This is evident, for example, from the essential GLC requirements for its effective application, namely: (1) a strict adherence to the type of non-polar column and conditions selected, including the use of two internal standards ${ }^{1}$ and (2) standardization of the column, i.e., determination of ΔG_{R} values from readily available steroid standards by rapid, systematic procedures as described in ref. 1.
TABLE XVIII
ERROR* ON L_{R} VALUES CALCULATED BY THE A G_{R} METHOD"* FOR STEROIDS OF GROUPS*" P17 $20 \beta 21(11)$, PI1 $\beta 17 \alpha 20 \beta 21$, AND P11 $\beta 17 \alpha 20 \alpha 21$

Steroid	Error on L_{R} values								
	A(11)	A(11,17)	P(1!)	P(11,20)	A17B(11)	P20B(11)	P17C20月(1])	P20¢21(11)	
5ßP3a17 $20 \beta 21$ (11)	$+26$	+30	$+30$	+28	$+15$	$+17$	$+16$	-4	
$\triangle 4 \mathrm{P} 317 \times 20 \beta 21(11)$	0	-2	$+1$	-1	0	$+1$	0	+2	
$5 \alpha \mathrm{P} 3 \mathrm{\beta} 17 \mathrm{C} 20 \beta 21(11)$	-1	0	-1	-2	-1	-1	$+2$	0	
	A/1P	$A 11 \beta(17)$	P/l ${ }^{\text {P }}$	$P 1 / \beta(20)$	A11/ 17%	P119208	P11817420ß	PlIP20821	
5 1 P3 $311 / \beta 17 \alpha 20 \beta 21$	+27	+26	$+29$	+25	$+2$	+14	+2	-5	
$\triangle 4 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta 21$	-1	0	-2	-2	-2	0	-2	0	
$\triangle 5 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta 21$	$+2$	$+3$	$+1$	+1	$+1$	$+2$	$+1$	$+2$	
$5 \alpha \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \beta 21$	$+1$	0	$+1$	0	0	$+2$	-1	$+1$	
	$A I / \beta$	$A 11 \beta(17)$	P1/3	$P \\| P(20)$	Al1317\%	P1/820a	P11817a20ca	PlıP20a2l	
5 β P3 $\alpha 11 \beta 17 \alpha 20 \alpha 21$	+19	$+17$	$+22$	+18	-5	$+15$	$+17$	-20	
$\triangle 4 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \alpha 21$	+1	+1	$+1$	+1	+1.	0	$+1$	-1	
$\triangle 5 \mathrm{P} 3 \beta 11 \beta 17 \alpha 20 \alpha 21$	+2	+2	$+2$	$+2$	$+2$	$+1$	$+1$	$+1$	
54 P 3 P11 $1817 \alpha 20 \alpha 21$	-1	-3	0	-1	-1	-2	-1	$+1$	
$\triangle 4 \mathrm{P} 11 \beta 17 \sim 20 \mu 21(3)$	-2	-3	-3	-2	- 3	-1	0	0	

[^12]By ensuring an excellent reproducibility and reliability of L_{R} data, the refined techniques which help to meet the first requirement also considerably reduce the amount of work required for effective operation. Once acquired, L_{R} and ΔG_{R} values constitute a set of permanent, reliable constants characteristic of the system

ACKNOWLEDGEMENTS

We are grateful to Dr. D. F. Johnson, National Institute of Health, Bethesda, Md., U.S.A., and to Professor W. Klyne and Dr. D. N. Kirk of Westfield College, London, Great Britain, for numerous samples from the Steroid Reference Collection.

REFERENCES

1 F. A. Vandenheuvel, J. Chromatogr., 96 (1974) 47.
2 F. A. Vandenheuvel, J. Chromatogr., 103 (1975) 113.
3 F. A. Vandenheuvel, J. Chromatogr,, 105 (1975) 359.
4 F. A. Vandenheuvel, J. Chromatogr., 115 (1975) 161.
5 C. J. W. Brooks and J. K. Norymberski, Biochem. J., 55 (1953) 371.
6 W. Nowaczinski, M. Goldner, J. Genest, P. Mavraux and L. Langevin, J. Lab. Clin. Med., 45 (1955) 818.

7 H. Breuer and L. Nocke, Z. Vitam. Horm. Fermentforsch., 9 (1957) 28.
8 F. A. Vandenheuvel and A. S. Court, J. Chromatogr., 39 (1969) 1.

[^0]: * Contribution No. 656 of the Animal Research Institute.

[^1]: * In the tables, under source, a letter followed by four digits indicates the catalogue number of Steraloids Inc., P.O. Box 127, Pawling, N.Y. 12564, U.S.A. Steroids provided by the Steroid Standard Collection are indicated by SRC; see Acknowledgements.

[^2]: * While the RD of (20) invariably produces both 20α and 20β isomers, that of (3) yields almost exclusively 3α with a 5β compound and 3β with a 5α compound. For 30 -min reductions leading to compounds still featuring (11), cf. text.

 As always ${ }^{1-3}$, the 3 -keto group in $5 \beta \mathrm{P}(3)$-steroids was converted to 3α and to 3β in all others. The 11 -keto group yielded 11β exclusively after 2 h reduction ${ }^{1,2}$. After 30 min, only a fraction of (11) was reduced, while (20) was completely reduced to 20α and $20 \beta^{1,2}$. The preparation of (11)-steroids completely reduced in the side-chain was therefore possible (see Tables III, IV, VII, and X).

[^3]: * All starting materials listed were available from outside sources; prepared compounds were also used (ef. text).
 ** The L_{R} values of most products are listed in Tables XIII-XV.

[^4]: * Average G_{R}-normal value $=G_{R} P 17 \alpha 20 \beta(11)=654$.
 * G_{R}-odd steroid.
 ** For L_{R} value, see Table IX of ref. 2.
 ${ }^{3} \Delta G_{R}=141$; cf. Table XVI.

[^5]: * Average G_{R}-normal value $=G_{R} P 17 \alpha 20 \alpha(11)=688$.
 ** G_{R}-odd steroid.
 ** For L_{R} value, see Table X of ref. 2.
 ${ }^{5} \Delta G_{R}=166 ; c f$. Table XVI.

[^6]: ${ }^{\text {z }}$ Average G_{R}-normal value $=G_{R}$ P11 $\beta 17 \alpha 20 \beta=723$.
 ** G_{R}-odd steroid.
 *** For L_{R} value, see Table XI of ref. 2.
 ${ }^{{ }^{5}} \Delta G_{R}=168 ; c f$. Table XVI.

[^7]: ${ }^{*}$ Average G_{R}-normal value $=G_{R} P 11 \beta 17 \omega 20 \alpha=757$.
 ${ }^{*} G_{R}$-odd steroid.
 *** For L_{R} value, see Table XII of ref. 2.
 ${ }^{5} \Delta G_{R}=158, c f$. Table XVI.

[^8]: * Average G_{R}-normal value $=G_{R} \mathbf{P 2 0 \beta 2 1 (1 1)}=839$.
 ${ }^{* *} G_{R}$-odd steroid.
 ** For L_{R} value, see Table IX of ref. 2.
 ${ }^{*} A G_{R}=328 ; c f$. Table XVI.

[^9]: * Average G_{R}-normal value $=G_{R}$ P11 $120 \alpha 21=862$.
 ${ }^{* *} G_{R}$-odd steroid.
 \therefore For L_{R} value, see Table XII of ref. 2.
 ${ }^{8} \Delta G_{R}=262 ; c f$. Table XVI.

[^10]: * Average G_{R}-normal value $=G_{R} P 11 \beta 17 \alpha 20 \alpha 21=1007$.
 ${ }^{* *} G_{R}$-odd steroid.
 *** For L_{R} value, see Table XII of ref. 2.
 ${ }^{*} A G_{R}=409 ;$ of. Table XVI.

[^11]: - CE Table vit ref. i.

 $=E G_{R}$ ode steroid.

[^12]: "* L_{R} values calculated as $L_{R}(\mathrm{a})=L_{R}(\mathrm{~b})+\Delta G_{R}$ (eqn. 15 of ref. 1), where $L_{R}(\mathrm{~b})$ is the L_{R} value of the M-corresponding steroid in the related group
 indicated in the row, and $A G_{R}$ is the appropriate value taken from Table XVI. L_{R} values of steroids of groups $\mathrm{A}(11,17)$ and A11 $\beta(\mathrm{I})$ are listed in Tables XIV and XV, respectively. L_{R} values of steroids of groups P17a20 111), P11 $\beta 17 \alpha 20 \beta, \mathrm{P} 11 \beta 17 \alpha 20 \alpha, \mathrm{P} 20 \beta 21(11), \mathrm{P} 11 \beta 20 \beta 21$, and $\mathrm{P} 11 \beta 20 \alpha 21$ are listed in Tables III-IX, respectively. For L_{R} values of steroids of groups $A(11), A 11 \beta, A 17 \beta(11)$, and $A 11 \beta 17 \beta$, see Tables III, IV, VII, and VIII of ref. 1 , respectively. For L_{R} values of steroids of groups $P(11), P 11 \beta, P(11,20), \mathrm{P} 11 \beta(20), \mathrm{P} 20 \beta(11), \mathrm{P} 11 \beta 20 \beta$, and $\mathrm{P} 11 \beta 20 \alpha$, see Tables V, VI, VII, VIII, $1 \mathrm{X}, \mathrm{XII}$, and XII of ref. 2 , respectively.
 ${ }^{* * *} L_{K}$ values of steroids of these groups are listed in Tables X, XI, and XII, respectively.

